论文标题

弗拉索夫血浆的匹配对分析

Matched pair analysis of the Vlasov plasma

论文作者

Esen, Oğul, Sütlü, Serkan

论文摘要

我们从匹配的配对分解观点中介绍了Vlasov等离子体的Hamiltonian(Lie-Poisson)分析及其动力学矩的动力学分析。我们将这些(Lie-Poisson)系统表示为\ textIt {相互作用}(Lie-Poisson)亚动物的耦合。相互作用超出了众所周知的半独立产品理论。因此,作为本讨论的几何框架,我们解决了\ textit {匹配的对lie-poisson}公式,允许相互作用。此外,无论是动力学矩和弗拉索夫血浆病例,我们都观察到,本构亚动力学之一是可压缩的等液流动流,另一个是$ \ geq 2 $的动力学矩的动力学。在这方面,我们提供的代数/几何(匹配对)分解与物理直觉非常和谐。为了完成讨论,我们提出了Vlasov等离子体的动量表述,以及其匹配的配对分解。

We present the Hamiltonian (Lie-Poisson) analysis of the Vlasov plasma, and the dynamics of its kinetic moments, from the matched pair decomposition point of view. We express these (Lie-Poisson) systems as couplings of \textit{mutually interacting} (Lie-Poisson) subdynamics. The mutual interaction is beyond the well-known semi-direct product theory. Accordingly, as the geometric framework of the present discussion, we address the \textit{matched pair Lie-Poisson} formulation allowing mutual interactions. Moreover, both for the kinetic moments and the Vlasov plasma cases, we observe that one of the constitutive subdynamics is the compressible isentropic fluid flow, and the other is the dynamics of the kinetic moments of order $\geq 2$. In this regard, the algebraic/geometric (matched pair) decomposition that we offer, is in perfect harmony with the physical intuition. To complete the discussion, we present a momentum formulation of the Vlasov plasma, along with its matched pair decomposition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源