论文标题
CrowdTSC:基于人群的神经网络,用于文本情感分类
CrowdTSC: Crowd-based Neural Networks for Text Sentiment Classification
论文作者
论文摘要
情感分类是内容分析中的一项基本任务。尽管与浅层模型相比,深度学习表明文本分类表现有希望的表现,但它仍然无法培训令人满意的分类器文本情感。就理解和捕获文本的情感极性而言,人类比机器学习模型更复杂。在本文中,我们利用人类智能的力量对文本情感分类。我们建议基于人群的神经网络用于文本情感分类(简称CrowdTSC)。我们在众包平台上设计和发布问题,以收集文本中的关键字。采样和聚类用于降低众包的成本。此外,我们提出了一个基于注意力的神经网络和一个混合神经网络,该网络将收集到的关键字作为人类对深神经网络的指导。公共数据集上的广泛实验证实,CrowdTSC的表现优于最先进的模型,证明了基于人群的关键字指导的有效性。
Sentiment classification is a fundamental task in content analysis. Although deep learning has demonstrated promising performance in text classification compared with shallow models, it is still not able to train a satisfying classifier for text sentiment. Human beings are more sophisticated than machine learning models in terms of understanding and capturing the emotional polarities of texts. In this paper, we leverage the power of human intelligence into text sentiment classification. We propose Crowd-based neural networks for Text Sentiment Classification (CrowdTSC for short). We design and post the questions on a crowdsourcing platform to collect the keywords in texts. Sampling and clustering are utilized to reduce the cost of crowdsourcing. Also, we present an attention-based neural network and a hybrid neural network, which incorporate the collected keywords as human being's guidance into deep neural networks. Extensive experiments on public datasets confirm that CrowdTSC outperforms state-of-the-art models, justifying the effectiveness of crowd-based keyword guidance.