论文标题
在指数/三角相互作用下,与随机量化相关的DIRICHLET运算符的唯一独特性
Strong uniqueness for Dirichlet operators related to stochastic quantization under exponential/trigonometric interactions on the two-dimensional torus
论文作者
论文摘要
我们考虑具有指数/三角相互作用的时空量子场。在欧几里得量子场理论的背景下,前者和后者分别称为Hoegh-Krohn模型和正弦模型。本文的主要目的是构建无限的尺寸扩散过程,该过程通过dirichlet形式的方法和证明相应的dirichlet运算符的强烈独特性来解决二维圆环上这些量子场的修改随机量化方程。
We consider space-time quantum fields with exponential/trigonometric interactions. In the context of Euclidean quantum field theory, the former and the latter are called the Hoegh-Krohn model and the Sine-Gordon model, respectively. The main objective of the present paper is to construct infinite dimensional diffusion processes which solve modified stochastic quantization equations for these quantum fields on the two-dimensional torus by the Dirichlet form approach and to prove strong uniqueness of the corresponding Dirichlet operators.