论文标题

在$ 3 $ -sphere中的表面不变的表面上

On invariants of surfaces in the $3$-sphere

论文作者

Kurihara, Hiroaki

论文摘要

在本文中,我们研究了标准$ 3 $ -sphere中的封闭连接的定向表面的同位素类别。这样的表面将$ 3 $ -SPHERE拆分为两个紧凑的连接子手势,通过使用其Heegaard分裂,我们获得了$ 2 $ - 组成的句柄链接。在本文中,我们首先证明了这种2组分句柄链接的等效类,直到附加琐碎的$ 1 $ - handles可以恢复原始表面。因此,我们可以将$ 3 $ -sphere的表面的研究减少到$ 2 $ - 组成的句柄链接到稳定。然后,通过使用$ g $ - fomilies of Quandles,我们构建了$ 2 $ - 组成的句柄链接的不变性,以附加琐碎的$ 1 $ - handles,这导致$ 3 $ -sphere的表面不变。为了查看不变性的有效性,我们还将表明,我们的不变式可以区分$ 3 $ -sphere中的某些明确表面。

In this paper we study isotopy classes of closed connected orientable surfaces in the standard $3$-sphere. Such a surface splits the $3$-sphere into two compact connected submanifolds, and by using their Heegaard splittings, we obtain a $2$-component handlebody-link. In this paper, we first show that the equivalence class of such a 2-component handlebody-link up to attaching trivial $1$-handles can recover the original surface. Therefore, we can reduce the study of surfaces in the $3$-sphere to that of $2$-component handlebody-links up to stabilizations. Then, by using $G$-families of quandles, we construct invariants of $2$-component handlebody-links up to attaching trivial $1$-handles, which lead to invariants of surfaces in the $3$-sphere. In order to see the effectiveness of our invariants, we will also show that our invariants can distinguish certain explicit surfaces in the $3$-sphere.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源