论文标题

序列增强框架的个性化顺序建议

Inter-sequence Enhanced Framework for Personalized Sequential Recommendation

论文作者

Liu, Feng, Liu, Weiwen, Li, Xutao, Ye, Yunming

论文摘要

在顺序建议中,对用户历史互动的顺序相关进行建模至关重要。但是,大多数方法主要集中于对每个单个序列内的\ emph {intra-sequence} item相关性进行建模,但忽略了\ emph {inter-sequence} inter inter intim} inter inter inter inter seption}跨不同用户交互序列。尽管几项研究已经意识到了这个问题,但它们的方法是简单的,要么是隐式的。为了更好地利用此类信息,我们为顺序推荐(ISSR)提出了一个相互序列增强的框架。在ISSR中,考虑了相互序列和序列内的项目相关性。首先,我们在间序相关编码器中为图形神经网络配备了图形神经网络,以捕获从用户 - 项目二分组图和项目项目图的高阶项目相关性。然后,基于序列相关编码器,我们在序列中相关编码器中构建GRU网络和注意网络,以模拟每个单个序列和时间动力学中的项目顺序相关性,以预测用户对候选项目的偏好。此外,我们对三个现实世界数据集进行了广泛的实验。实验结果表明,ISSR优于许多最先进的方法以及序列相关编码器的有效性。

Modeling the sequential correlation of users' historical interactions is essential in sequential recommendation. However, the majority of the approaches mainly focus on modeling the \emph{intra-sequence} item correlation within each individual sequence but neglect the \emph{inter-sequence} item correlation across different user interaction sequences. Though several studies have been aware of this issue, their method is either simple or implicit. To make better use of such information, we propose an inter-sequence enhanced framework for the Sequential Recommendation (ISSR). In ISSR, both inter-sequence and intra-sequence item correlation are considered. Firstly, we equip graph neural networks in the inter-sequence correlation encoder to capture the high-order item correlation from the user-item bipartite graph and the item-item graph. Then, based on the inter-sequence correlation encoder, we build GRU network and attention network in the intra-sequence correlation encoder to model the item sequential correlation within each individual sequence and temporal dynamics for predicting users' preferences over candidate items. Additionally, we conduct extensive experiments on three real-world datasets. The experimental results demonstrate the superiority of ISSR over many state-of-the-art methods and the effectiveness of the inter-sequence correlation encoder.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源