论文标题
米尔诺(Milnor)的动机谱切除
Milnor excision for motivic spectra
论文作者
论文摘要
我们证明,$ \ infty $ - 动机光谱的类别满足了Milnor的切除:如果$ a \ to b $是通勤戒指的形态学的一种形态学,将理想的$ i \ subset a $ subset a $ iSomorphorny上的$ b $上的理想带到了$ b $的理想上,那么与$ $ $ $ $ $ $ ib相当于$ $ ib $ ib $ ib $ ib和a $ ib $ ib $ ib y y $ ib/ib。因此,任何由动机频谱代表的共同体理论都可以满足Milnor切除。我们还证明了Ayoub对有限虚拟共同体学方案的典型动机的Milnor切除。
We prove that the $\infty$-category of motivic spectra satisfies Milnor excision: if $A\to B$ is a morphism of commutative rings sending an ideal $I\subset A$ isomorphically onto an ideal of $B$, then a motivic spectrum over $A$ is equivalent to a pair of motivic spectra over $B$ and $A/I$ that are identified over $B/IB$. Consequently, any cohomology theory represented by a motivic spectrum satisfies Milnor excision. We also prove Milnor excision for Ayoub's étale motives over schemes of finite virtual cohomological dimension.