论文标题

城市异常分析:描述,检测和预测

Urban Anomaly Analytics: Description, Detection, and Prediction

论文作者

Zhang, Mingyang, Li, Tong, Yu, Yue, Li, Yong, Hui, Pan, Zheng, Yu

论文摘要

如果不正确处理,城市异常可能会导致生命或财产损失。在早期阶段自动提醒异常,甚至在发生之前预测异常,对人群具有巨大的价值。最近,数据驱动的城市异常分析框架正在形成,该框架利用城市大数据和机器学习算法自动检测和预测城市异常。在这项调查中,我们对城市异常分析的最新研究进行了全面综述。我们首先概述了四种主要类型的城市异常,交通异常,意外的人群,环境异常和个人异常。接下来,我们总结了从不同设备(即轨迹,旅行记录,CDR,城市传感器,事件记录,环境数据,社交媒体和监视摄像头)获得的各种类型的城市数据集。随后,提出了对检测和预测城市异常技术问题的全面调查。最后,研究挑战和开放问题。

Urban anomalies may result in loss of life or property if not handled properly. Automatically alerting anomalies in their early stage or even predicting anomalies before happening are of great value for populations. Recently, data-driven urban anomaly analysis frameworks have been forming, which utilize urban big data and machine learning algorithms to detect and predict urban anomalies automatically. In this survey, we make a comprehensive review of the state-of-the-art research on urban anomaly analytics. We first give an overview of four main types of urban anomalies, traffic anomaly, unexpected crowds, environment anomaly, and individual anomaly. Next, we summarize various types of urban datasets obtained from diverse devices, i.e., trajectory, trip records, CDRs, urban sensors, event records, environment data, social media and surveillance cameras. Subsequently, a comprehensive survey of issues on detecting and predicting techniques for urban anomalies is presented. Finally, research challenges and open problems as discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源