论文标题

量子机学习和量子仿生学:透视

Quantum machine learning and quantum biomimetics: A perspective

论文作者

Lamata, Lucas

论文摘要

Quantum机器学习已成为一种令人兴奋且有希望的范式量子技术。一方面,它可以允许通过量子设备进行更有效的机器学习计算,而另一方面,使用机器学习技术来更好地控制量子系统。在量子机学习中,量子加固学习旨在开发可能与外部世界相互作用并适应它的“智能”量子代理,并采用实现最终目标的策略。量子机学习中的另一个范式是量子自动编码器的范式,这可能允许通过培训过程在量子设备中使用较少的资源。此外,量子生物元素的领域旨在建立生物学和量子系统之间的类比,以寻找可能实现有用应用的无意连接。最近的两个例子是量子人造生命以及量子回忆录的概念。从这个角度来看,我们概述了这些主题,描述了科学界进行的相关研究。

Quantum machine learning has emerged as an exciting and promising paradigm inside quantum technologies. It may permit, on the one hand, to carry out more efficient machine learning calculations by means of quantum devices, while, on the other hand, to employ machine learning techniques to better control quantum systems. Inside quantum machine learning, quantum reinforcement learning aims at developing "intelligent" quantum agents that may interact with the outer world and adapt to it, with the strategy of achieving some final goal. Another paradigm inside quantum machine learning is that of quantum autoencoders, which may allow one for employing fewer resources in a quantum device via a training process. Moreover, the field of quantum biomimetics aims at establishing analogies between biological and quantum systems, to look for previously inadvertent connections that may enable useful applications. Two recent examples are the concepts of quantum artificial life, as well as of quantum memristors. In this Perspective, we give an overview of these topics, describing the related research carried out by the scientific community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源