论文标题

多型资源分配的概率序列机制

Probabilistic Serial Mechanism for Multi-Type Resource Allocation

论文作者

Guo, Xiaoxi, Sikdar, Sujoy, Wang, Haibin, Xia, Lirong, Cao, Yongzhi, Wang, Hanpin

论文摘要

在多类型资源分配(MTRA)问题中,有p $ \ ge $ 2类型的项目和n个代理,每个代理都需要每种类型的一个单位,并且与包含每种类型的一个项目的捆绑包相比,有严格的线性偏好。对于具有不可分割的项目的MTRA,我们的第一个结果是与单一类型(P = 1)设置直接形成鲜明对比的不可能的定理:没有机制,其输出始终可以分解为离散分配的概率分布(在代理之间没有项目分配),可以满足SD效率和SD效率和SD-增强性。为了避免这种不可能的结果,我们考虑了词典偏好的自然假设,并提供了概率序列(PS)的扩展,称为词典概率概率序列(Lexips)。此外,当不允许代理商记录其重要性命令时,Lexips可以满足SD-Weak-trategypraceptents。对于具有可分配项目的MTRA,我们表明现有的多型概率串行(MPS)机制满足了Lexi效率的更强效率概念,并且在严格的线性偏好和SD-Weak-stratements pratements pratement offerentions and sd-tratemation pratectip practife offications pratectrative profactife prefiness precoticography Pericographicperence均无效。我们还可以证明,MP可以通过词汇 - 普比性和项目的顺式公平来表征,而MPS属于的饮食算法的家族可以以无生成周期的状态来表征。

In multi-type resource allocation (MTRA) problems, there are p $\ge$ 2 types of items, and n agents, who each demand one unit of items of each type, and have strict linear preferences over bundles consisting of one item of each type. For MTRAs with indivisible items, our first result is an impossibility theorem that is in direct contrast to the single type (p = 1) setting: No mechanism, the output of which is always decomposable into a probability distribution over discrete assignments (where no item is split between agents), can satisfy both sd-efficiency and sd-envy-freeness. To circumvent this impossibility result, we consider the natural assumption of lexicographic preference, and provide an extension of the probabilistic serial (PS), called lexicographic probabilistic serial (LexiPS).We prove that LexiPS satisfies sd-efficiency and sd-envy-freeness, retaining the desirable properties of PS. Moreover, LexiPS satisfies sd-weak-strategyproofness when agents are not allowed to misreport their importance orders. For MTRAs with divisible items, we show that the existing multi-type probabilistic serial (MPS) mechanism satisfies the stronger efficiency notion of lexi-efficiency, and is sd-envy-free under strict linear preferences, and sd-weak-strategyproof under lexicographic preferences. We also prove that MPS can be characterized both by leximin-ptimality and by item-wise ordinal fairness, and the family of eating algorithms which MPS belongs to can be characterized by no-generalized-cycle condition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源