论文标题

使用后选择性推断的贝叶斯综合模型:放射基因组学案例研究

Integrative Bayesian models using Post-selective Inference: a case study in Radiogenomics

论文作者

Panigrahi, Snigdha, Mohammed, Shariq, Rao, Arvind, Baladandayuthapani, Veerabhadran

论文摘要

基于基因组学与大量中介表型(例如成像)之间统计相关关联的综合分析提供了对疾病机制的临床相关性的重要见解。但是,除非推论说明这些关联的精度,否则所得整合模型中不确定性的估计是不可靠的。在本文中,我们开发了选择感知的贝叶斯方法:(i)在灵活的一类综合贝叶斯模型中,通过“选择意识的后验”来抵消模型选择偏见的影响,以通过$ \ ell_1 $ regardized算法选择了有希望的变量; (ii)当使用相同的数据集用于选择和不确定性估计时,在模型选择质量和推理能力质量之间进行了不可避免的权衡。对于我们的方法论开发的中心,当使用基于梯度的MCMC采样用于估算从选择性意识的后端时,使用重新聚集映射的精心构造的条件可能性函数提供了明显的拖拉更新。将我们的方法应用于放射基因组学分析中,我们成功地恢复了几种重要的基因途径,并估计了它们与患者生存时间的关联的不确定性。

Integrative analyses based on statistically relevant associations between genomics and a wealth of intermediary phenotypes (such as imaging) provide vital insights into their clinical relevance in terms of the disease mechanisms. Estimates for uncertainty in the resulting integrative models are however unreliable unless inference accounts for the selection of these associations with accuracy. In this article, we develop selection-aware Bayesian methods which: (i) counteract the impact of model selection bias through a "selection-aware posterior" in a flexible class of integrative Bayesian models post a selection of promising variables via $\ell_1$-regularized algorithms; (ii) strike an inevitable tradeoff between the quality of model selection and inferential power when the same dataset is used for both selection and uncertainty estimation. Central to our methodological development, a carefully constructed conditional likelihood function deployed with a reparameterization mapping provides notably tractable updates when gradient-based MCMC sampling is used for estimating uncertainties from the selection-aware posterior. Applying our methods to a radiogenomic analysis, we successfully recover several important gene pathways and estimate uncertainties for their associations with patient survival times.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源