论文标题

基于大脑的汽车信息娱乐

Brain-based control of car infotainment

论文作者

Bellotti, Andrea, Antopolskiy, Sergey, Marchenkova, Anna, Colucciello, Alessia, Avanzini, Pietro, Vecchiato, Giovanni, Ambeck-Madsen, Jonas, Ascari, Luca

论文摘要

如今,在嵌入式系统上运行高级AI的可能性可以使人与机器之间的自然相互作用,尤其是在汽车场上。我们提出了一个基于自定义的基于EEG的大脑计算机接口(BCI),该界面利用了用奇数球实验范式诱导的事件相关电位(ERP)来控制汽车的信息娱乐菜单。对系统进行初步评估,对标准实验室环境中的10名参与者以及在封闭的私人轨道上行驶时进行了评估。该任务包括以奇数方式的6个不同菜单图标的重复演示。通过仅从实验室或驾驶实验(LAB和车内模型)或两个(混合模型)组合的脑数据的不同机器学习方法培训主题特定的模型,以对目标和非target刺激的EEG响应进行分类。所有模型均经过对受试者的最后一次室内课程的测试,这些课程未用于培训。 ERP振幅的分析表明,在实验室和驾驶时,与目标和非目标图标相关的EEG响应之间的统计学意义(P <0.05)。在所有训练配置中,所有受试者的分类精度(CA)都高于机会水平,在混合动力赛上进行了深入的CNN,获得最高分数(平均CA = 53 $ \ pm $ 12%,6级歧视的机会水平为16%)。经典BCI方法提供的特征重要性的排名表明,目标和非目标响应之间的基于ERP的歧视。在这些条件下,在LAB内和车内训练集的CAS之间也没有观察到CAS之间的统计差异,也没有观察到EEG响应之间的统计差异,这表明在标准实验室设置中收集的数据可以很容易地用于实际驾驶应用程序,而无需明显的性能下降。

Nowadays, the possibility to run advanced AI on embedded systems allows natural interaction between humans and machines, especially in the automotive field. We present a custom portable EEG-based Brain-Computer Interface (BCI) that exploits Event-Related Potentials (ERPs) induced with an oddball experimental paradigm to control the infotainment menu of a car. A preliminary evaluation of the system was performed on 10 participants in a standard laboratory setting and while driving on a closed private track. The task consisted of repeated presentations of 6 different menu icons in oddball fashion. Subject-specific models were trained with different machine learning approaches on cerebral data from either only laboratory or driving experiments (in-lab and in-car models) or a combination of the two (hybrid model) to classify EEG responses to target and non-target stimuli. All models were tested on the subjects' last in-car sessions that were not used for the training. Analysis of ERPs amplitude showed statistically significant (p < 0.05) differences between the EEG responses associated with target and non-target icons, both in the laboratory and while driving. Classification Accuracy (CA) was above chance level for all subjects in all training configurations, with a deep CNN trained on the hybrid set achieving the highest scores (mean CA = 53 $\pm$ 12 %, with 16 % chance level for the 6-class discrimination). The ranking of the features importance provided by a classical BCI approach suggests an ERP-based discrimination between target and non-target responses. No statistical differences were observed between the CAs for the in-lab and in-car training sets, nor between the EEG responses in these conditions, indicating that the data collected in the standard laboratory setting could be readily used for a real driving application without a noticeable decrease in performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源