论文标题
双极扩散在双佛罗斯特代码中
Ambipolar diffusion in the Bifrost code
论文作者
论文摘要
双极扩散是一种物理机制,与部分离子化的血浆中带电和中性颗粒之间的漂移有关,这在许多不同的天体物理系统中是关键。但是,由于基本的不确定性与相关的微物理方面以及对数值建模的强大约束,理解其效果是具有挑战性的。我们的目的是引入一个数值工具,该工具使我们能够解决涉及双极扩散的复杂问题,在此附加,在这种问题中,偏离电离平衡是重要的或需要高分辨率的问题。该工具的主要应用是用于太阳大气计算,但是此处介绍的方法和结果也可能对其他天体物理系统产生潜在的影响。我们为恒星大气的双佛罗斯特代码开发了一个新的模块,该模块在广义欧姆定律中提高了双极扩散项的计算能力。该模块包括碰撞术语,足以适合太阳能球体中最酷区域的过程。作为模块的关键特征,我们实施了超级时间步长(STS)技术,该技术允许对计算的重要加速。我们还引入了高扩散术语,以确保代码的稳定性。我们表明,要在太阳大气中具有高压型扩散系数的准确值,必须在状态方程中作为原子元素不仅在氢和氦气的方程中包括在内,而且还必须在状态的方程中,还包括钠,硅和钾。此外,我们建立了一系列标准,以自动选择STS方法的自由参数,该参数可以保证最佳性能,从而优化了双极性扩散计算的稳定性和速度。我们通过与自相似分析解决方案进行比较来验证STS实现。
Ambipolar diffusion is a physical mechanism related to the drift between charged and neutral particles in a partially ionized plasma that is key in many different astrophysical systems. However, understanding its effects is challenging due to basic uncertainties concerning relevant microphysical aspects and the strong constraints it imposes on the numerical modeling. Our aim is to introduce a numerical tool that allows us to address complex problems involving ambipolar diffusion in which, additionally, departures from ionization equilibrium are important or high resolution is needed. The primary application of this tool is for solar atmosphere calculations, but the methods and results presented here may also have a potential impact on other astrophysical systems. We have developed a new module for the stellar atmosphere Bifrost code that improves its computational capabilities of the ambipolar diffusion term in the Generalized Ohm's Law. This module includes, among other things, collision terms adequate to processes in the coolest regions in the solar chromosphere. As a key feature of the module, we have implemented the Super Time-Stepping (STS) technique, that allows an important acceleration of the calculations. We have also introduced hyperdiffusion terms to guarantee the stability of the code. We show that to have an accurate value for the ambipolar diffusion coefficient in the solar atmosphere it is necessary to include as atomic elements in the equation of state not only hydrogen and helium but also the main electron donors like sodium, silicon and potassium. In addition, we establish a range of criteria to set up an automatic selection of the free parameters of the STS method that guarantees the best performance, optimizing the stability and speed for the ambipolar diffusion calculations. We validate the STS implementation by comparison with a self-similar analytical solution.