论文标题

计算拓扑优化问题的多个解决方案

Computing multiple solutions of topology optimization problems

论文作者

Papadopoulos, Ioannis P. A., Farrell, Patrick E., Surowiec, Thomas M.

论文摘要

由于缺乏凸度,拓扑优化问题通常支持多个本地最小值。通常,将基于梯度的技术与模型参数中的延续结合在一起,用于促进融合到最佳的解决方案。但是,即使在最简单的情况下,这些方法也可能失败。在本文中,我们提出了一种算法,以通过二阶方法的二阶方法进行系统的探索性搜索搜索,而无需进行良好的初始猜测。该算法以新颖的方式结合了通缩,屏障方法和原始双重活动求解器的技术。我们在几个数字示例上证明了这种方法,在某些情况下观察网格独立的依赖性,并表明可以恢复多个不同的局部最小值。

Topology optimization problems often support multiple local minima due to a lack of convexity. Typically, gradient-based techniques combined with continuation in model parameters are used to promote convergence to more optimal solutions; however, these methods can fail even in the simplest cases. In this paper, we present an algorithm to perform a systematic exploratory search for the solutions of the optimization problem via second-order methods without a good initial guess. The algorithm combines the techniques of deflation, barrier methods and primal-dual active set solvers in a novel way. We demonstrate this approach on several numerical examples, observe mesh-independence in certain cases and show that multiple distinct local minima can be recovered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源