论文标题
所有Boolean Max-2csps和Max-ksat的最佳流近似值
Optimal Streaming Approximations for all Boolean Max-2CSPs and Max-kSAT
论文作者
论文摘要
我们证明了流模型中所有Boolean Max-2CSP问题的近似值的上限和下限。具体而言,对于每种类型的Max-2CSP问题,我们都会给出一个明确的常量$α$,s.t。对于任何$ε> 0 $(i),使用space $ o(\ log {n})$的$(α-ε)$ - 流近似; (ii)任何$(α+ε)$ - 流近似需要空间$ω(\ sqrt {n})$。这概括了[Kapralov,Khanna,Sudan Soda 2015; Kapralov,Krachun Stoc 2019],他表明最高切割的最佳近似值为$ 1/2 $。 在这项工作之前,确定所有其他Max-2CSP的比率的问题均已开放。对于某些特定的MAX-2CSP,我们的结果令人惊讶。对于最大速率问题,上限为$ 1/2 $的上限与$ 2/5 $的下限[Guruswami,Velingker,Velusamy大约2017年]。我们表明,这些界限都不紧密,最大值的最佳比率为$ 4/9 $。我们还确定Max-2sat的紧密近似值是$ \ sqrt {2}/2 $,并且对于Max-2sat,它是$ 3/4 $。作为副产品,我们的结果在Max-2sat和精确的Max-2sat的空间效率近似之间给出了分离。这与多项式空间的多项式时间算法的设置形成鲜明对比,在多项式空间中,这两个问题也很难近似。最后,我们证明\ mksat {}的紧密流近似为$ \ sqrt {2}/2 $对于每个$ k \ geq2 $。
We prove tight upper and lower bounds on approximation ratios of all Boolean Max-2CSP problems in the streaming model. Specifically, for every type of Max-2CSP problem, we give an explicit constant $α$, s.t. for any $ε>0$ (i) there is an $(α-ε)$-streaming approximation using space $O(\log{n})$; and (ii) any $(α+ε)$-streaming approximation requires space $Ω(\sqrt{n})$. This generalizes the celebrated work of [Kapralov, Khanna, Sudan SODA 2015; Kapralov, Krachun STOC 2019], who showed that the optimal approximation ratio for Max-CUT was $1/2$. Prior to this work, the problem of determining this ratio was open for all other Max-2CSPs. Our results are quite surprising for some specific Max-2CSPs. For the Max-DCUT problem, there was a gap between an upper bound of $1/2$ and a lower bound of $2/5$ [Guruswami, Velingker, Velusamy APPROX 2017]. We show that neither of these bounds is tight, and the optimal ratio for Max-DCUT is $4/9$. We also establish that the tight approximation for Max-2SAT is $\sqrt{2}/2$, and for Exact Max-2SAT it is $3/4$. As a byproduct, our result gives a separation between space-efficient approximations for Max-2SAT and Exact Max-2SAT. This is in sharp contrast to the setting of polynomial-time algorithms with polynomial space, where the two problems are known to be equally hard to approximate. Finally, we prove that the tight streaming approximation for \mksat{} is $\sqrt{2}/2$ for every $k\geq2$.