论文标题
男女校自动形态群体的有限亚组几乎是班级的“几乎” nilpotent
Finite subgroups of the birational automorphism group are 'almost' nilpotent of class at most two
论文作者
论文摘要
如果存在一个常数$ j \ in \ mathbb {z}^+$,则我们将最多$ c $ g $ nilptime of Chob nilpotime of Chob $ C $(C \ in \ Mathbb {n})$,以便每个有限的子组$ h \ leq g $都包含一个nilpotent up $ k $ j $ j $ j $ j $ j $ j $ j $ c y $ c $ c $ c y $ c y $我们表明,在一个特征零领域的各种领域的男子式自动形态群体最多是班级的乔丹。
We call a group $G$ nilpotently Jordan of class at most $c$ $(c\in\mathbb{N})$ if there exists a constant $J\in\mathbb{Z}^+$ such that every finite subgroup $H\leqq G$ contains a nilpotent subgroup $K\leqq H$ of class at most $c$ and index at most $J$. We show that the birational automorphism group of a variety over a field of characteristic zero is nilpotently Jordan of class at most two.