论文标题

使用外部陷阱与随机回报的随机重置

Stochastic resetting with stochastic returns using external trap

论文作者

Gupta, Deepak, Plata, Carlos A, Kundu, Anupam, Pal, Arnab

论文摘要

在过去的几年中,随机重置已成为引起极大关注的主题。迄今为止,大多数理论研究都集中在瞬时重置上,但是,这是对现场实现或实验验证的主要障碍。这是因为在现实世界中,将粒子从一个地方带到另一个地方需要有限的时间,因此对现有理论的概括以纳入非持续重置。在本文中,我们提出了一种重置方法,该方法涉及以外部限制陷阱潜在的$ u(x)为中心的非持续回报,以重置位置为中心。我们考虑了一个布朗粒子,该粒子从原点开始随机运动。重置后,陷阱被打开,粒子开始向陷阱的中心施加力,将其驱动其返回到原点。当粒子首次通往该中心时,返回阶段结束。我们开发一个一般框架来研究这样的设置。重要的是,我们观察到该系统达到了非平衡稳态状态,我们将在$ u(x)$的两种选择中分析,即(i)线性和(ii)谐波。最后,我们执行数值模拟,并与该理论找到了极好的一致性。这里开发的一般形式主义可以应用于更现实的回报方案,为进一步的理论和实验应用开辟了一个全景。

In the past few years, stochastic resetting has become a subject of immense interest. Most of the theoretical studies so far focused on instantaneous resetting which is, however, a major impediment to practical realization or experimental verification in the field. This is because in the real world, taking a particle from one place to another requires finite time and thus a generalization of the existing theory to incorporate non-instantaneous resetting is very much in need. In this paper, we propose a method of resetting which involves non-instantaneous returns facilitated by an external confining trap potential $U(x)$ centered at the resetting location. We consider a Brownian particle that starts its random motion from the origin. Upon resetting, the trap is switched on and the particle starts experiencing a force towards the center of the trap which drives it to return to the origin. The return phase ends when the particle makes a first passage to this center. We develop a general framework to study such a set up. Importantly, we observe that the system reaches a non-equilibrium steady state which we analyze in full details for two choices of $U(x)$, namely, (i) linear and (ii) harmonic. Finally, we perform numerical simulations and find an excellent agreement with the theory. The general formalism developed here can be applied to more realistic return protocols opening up a panorama of possibilities for further theoretical and experimental applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源