论文标题
上下文化的图形注意网络,用于推荐使用项目知识图
Contextualized Graph Attention Network for Recommendation with Item Knowledge Graph
论文作者
论文摘要
图神经网络(GNN)最近已应用于开发知识图(kg)以进行推荐。现有的基于GNN的方法明确对实体与其本地图上下文之间的依赖性建模(即其一阶邻居的集合),但可能无法有效捕获其非本地图形上下文(即,是最相关的高级邻居的集合)。在本文中,我们提出了一个新颖的推荐框架,称为上下文化图形注意网络(CGAT),该框架可以明确利用kg中实体的本地和非本地图形上下文信息。具体来说,CGAT考虑了用户对实体的个性化偏好,通过用户特定的图形注意机制捕获本地上下文信息。此外,CGAT采用有偏见的随机行走抽样过程来提取实体的非本地上下文,并利用复发性神经网络(RNN)来建模实体与其非本地上下文实体之间的依赖性。为了捕获用户对项目的个性化偏好,还开发了特定于项目的注意机制,以模拟目标项目与从用户的历史行为中提取的上下文项目之间的依赖性。与最新的基于KG的建议方法相比,实际数据集的实验结果证明了CGAT的有效性。
Graph neural networks (GNN) have recently been applied to exploit knowledge graph (KG) for recommendation. Existing GNN-based methods explicitly model the dependency between an entity and its local graph context in KG (i.e., the set of its first-order neighbors), but may not be effective in capturing its non-local graph context (i.e., the set of most related high-order neighbors). In this paper, we propose a novel recommendation framework, named Contextualized Graph Attention Network (CGAT), which can explicitly exploit both local and non-local graph context information of an entity in KG. Specifically, CGAT captures the local context information by a user-specific graph attention mechanism, considering a user's personalized preferences on entities. Moreover, CGAT employs a biased random walk sampling process to extract the non-local context of an entity, and utilizes a Recurrent Neural Network (RNN) to model the dependency between the entity and its non-local contextual entities. To capture the user's personalized preferences on items, an item-specific attention mechanism is also developed to model the dependency between a target item and the contextual items extracted from the user's historical behaviors. Experimental results on real datasets demonstrate the effectiveness of CGAT, compared with state-of-the-art KG-based recommendation methods.