论文标题

使用机器学习的全身宇宙微波背景前景清洁

Full-sky Cosmic Microwave Background Foreground Cleaning Using Machine Learning

论文作者

Petroff, Matthew A., Addison, Graeme E., Bennett, Charles L., Weiland, Janet L.

论文摘要

为了从毫米和亚毫米天空的观测值中提取宇宙学信息,必须首先去除前景成分,以产生宇宙微波背景(CMB)的估计。我们开发了一种机器学习方法,用于为毫米和亚毫米天的全天空温度图做到这一点。我们构建了一个贝叶斯球形卷积神经网络结构,以产生捕获前景光谱和形态方面的模型。此外,该模型还输出了一个每个像素误差估计,该误差估算同时结合了统计和模型不确定性。然后,使用模拟培训了该模型,该模拟将这些前景组件的知识纳入了Planck卫星发布时可用。在模拟地图上,在掩盖地图像素以$>50μ$ k的预测标准误差后,在整个天空上恢复了CMB,在全天空上的平均绝对差为$ <4μ$ k;角功率谱也可以准确恢复。一旦对模拟进行了验证,该模型就被应用于从其70GHz到857GHz通道的Planck温度观测值,以在Nside = 512的HealPix MAP分辨率下生成前景清洗的CMB图。此外,我们证明了该技术评估不同模拟如何匹配观测值的实用性,尤其是在热灰尘的建模方面。

In order to extract cosmological information from observations of the millimeter and submillimeter sky, foreground components must first be removed to produce an estimate of the cosmic microwave background (CMB). We developed a machine-learning approach for doing so for full-sky temperature maps of the millimeter and submillimeter sky. We constructed a Bayesian spherical convolutional neural network architecture to produce a model that captures both spectral and morphological aspects of the foregrounds. Additionally, the model outputs a per-pixel error estimate that incorporates both statistical and model uncertainties. The model was then trained using simulations that incorporated knowledge of these foreground components that was available at the time of the launch of the Planck satellite. On simulated maps, the CMB is recovered with a mean absolute difference of $<4μ$K over the full sky after masking map pixels with a predicted standard error of $>50μ$K; the angular power spectrum is also accurately recovered. Once validated with the simulations, this model was applied to Planck temperature observations from its 70GHz through 857GHz channels to produce a foreground-cleaned CMB map at a Healpix map resolution of NSIDE=512. Furthermore, we demonstrate the utility of the technique for evaluating how well different simulations match observations, particularly in regard to the modeling of thermal dust.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源