论文标题

三维晶格中的引导和扩散渗透过渡

Bootstrap and diffusion percolation transitions in three-dimensional lattices

论文作者

Choi, Jeong-Ok, Yu, Unjong

论文摘要

我们使用Newman-Ziff算法研究了简单立方体(SC),以身体为中心(BCC)和以面部为中心的立方(FCC)晶格中的自举和扩散渗透模型。通过在三个晶格中以高精度来计算渗透阈值和临界指数。除了连续和一阶渗透过渡外,我们还发现了一个双重转变,这是连续的转变,其次是阶参数的不连续性。我们表明,引导程序和扩散渗透模型的连续过渡具有与误差线中的经典渗透相同的关键指数,它们都属于同一普遍性类别。

We study the bootstrap and diffusion percolation models in the simple-cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) lattices using the Newman-Ziff algorithm. The percolation threshold and critical exponents were calculated through finite-size scaling with high precision in the three lattices. In addition to the continuous and first-order percolation transitions, we found a double transition, which is a continuous transition followed by a discontinuity of the order parameter. We show that the continuous transitions of the bootstrap and diffusion percolation models have the same critical exponents as the classical percolation within error bars and they all belong to the same universality class.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源