论文标题
统一,稳定且准确的无网格框架,用于Peridyanic对应建模。第二部分:压力边界条件的波浪传播和实施
A unified, stable and accurate meshfree framework for peridynamic correspondence modeling. Part II: wave propagation and enforcement of stress boundary conditions
论文作者
论文摘要
这项工作的总体目标是开发一种使用强形式的动力学(PD)和对应关系建模框架来开发有限变形建模的准确,健壮和稳定的方法。我们采用了最近开发的方法,可以利用高阶校正来改善对应公式中积分的计算。提出了一种统一的方法,该方法结合了PD中的再现核(RK)和广义移动最小二(GML)近似值以获得高阶梯度。但是,我们表明,改进的正交规则不足以处理通信模型不稳定性问题。在本文的第一部分中,开发了一种自然提供稳定性的债券缔合性高阶核心公式。提供了数值示例,以研究RK-PD,GMLS-PD的收敛性及其与键相关的版本与局部对应物的收敛性,因为非局部性的程度接近零。结果表明,债券缔合方法可提高RK-PD和GMLS-PD公式的鲁棒性,这对于实际应用至关重要。高阶,与键相关的模型可以获得二阶收敛,以获得平滑问题和一阶收敛,以解决涉及场不连续性的问题,例如曲线不合同的表面。在本文的第二部分中,我们将统一的PD框架用于:(a)研究波传播现象,这些现象已证明对基于州的通信PD框架有问题; (b)提出了一种新方法,以在对应PD公式中强制实施自然边界条件,这应该特别吸引耦合问题。我们的结果表明,键合的配方伴随着高阶梯度校正提供了关键成分,以获得工程规范模拟所需的必要准确性,稳定性和鲁棒性特征。
The overarching goal of this work is to develop an accurate, robust, and stable methodology for finite deformation modeling using strong-form peridynamics (PD) and the correspondence modeling framework. We adopt recently developed methods that make use of higher-order corrections to improve the computation of integrals in the correspondence formulation. A unified approach is presented that incorporates the reproducing kernel (RK) and generalized moving least square (GMLS) approximations in PD to obtain higher-order gradients. We show, however, that the improved quadrature rule does not suffice to handle correspondence-modeling instability issues. In Part I of this paper, a bond-associative, higher-order core formulation is developed that naturally provides stability. Numerical examples are provided to study the convergence of RK-PD, GMLS-PD, and their bond-associated versions to a local counterpart, as the degree of non-locality approaches zero. It is shown that the bond-associative approach improves the robustness of RK-PD and GMLS-PD formulations, which is essential for practical applications. The higher-order, bond-associated model can obtain second-order convergence for smooth problems and first-order convergence for problems involving field discontinuities, such as curvilinear free surfaces. In Part II of this paper we use our unified PD framework to: (a) study wave propagation phenomena, which have proven problematic for the state-based correspondence PD framework; (b) propose a new methodology to enforce natural boundary conditions in correspondence PD formulations, which should be particularly appealing to coupled problems. Our results indicate that bond-associative formulations accompanied by higher-order gradient correction provide the key ingredients to obtain the necessary accuracy, stability, and robustness characteristics needed for engineering-scale simulations.