论文标题
设计最佳实验:质子康普顿散射的应用
Designing Optimal Experiments: An Application to Proton Compton Scattering
论文作者
论文摘要
解释测量需要一个物理理论,但是在整个实验领域中,理论的准确性可能会有所不同。为了优化实验设计,并因此确保现代实验所需的大量资源集中在获取最有价值的数据上,因此必须考虑理论不确定性和预期的实验错误模式。我们针对此问题开发了贝叶斯的方法,并将其应用于质子康普顿散射的示例。手性有效场理论($χ$ eft)预测了该反应的散射幅度的功能形式,因此可以从数据中推断出细胞核的电磁极化。随着光子能量的增加,实验率和对极化的敏感性都会增加,但$χ$ eft的准确性降低。我们基于物理学的$χ$ eft截断错误的模型结合了对极化能力的当前知识和关于在HI $umγ$ S和MAMI的实验能力的合理假设,以评估从特定运动学的特定可观察物中测量特定可观察到的信息获得的信息,\ emph {i.e。最强的收益可能来自旋转可观察到的新数据$σ_{2x} $和$σ_{2x^\ prime} $ at $ω\ simeq140 $至$ 200 $ MEV和$ 40^\ circ $ to $ 120^\ circ $。这些将严格约束$γ_{e1e1}-γ_{e1m2} $。差异横截面上的新数据在$ 100 $和$ 200 $ \,MEV和广角范围内将大大改善对$α_{E1}-β_{M1} $,$γ_π$和$γ_π$和$γ_{M1M1M1}-γ_____________________{M1E2} $的约束。良好的信号也存在于$σ_3$和$σ_{2z^\ prime} $的$ 160 $ MEV左右。这种数据将是继续追求限制标量极化和完善对自旋极化能力的理解的关键。
Interpreting measurements requires a physical theory, but the theory's accuracy may vary across the experimental domain. To optimize experimental design, and so to ensure that the substantial resources necessary for modern experiments are focused on acquiring the most valuable data, both the theory uncertainty and the expected pattern of experimental errors must be considered. We develop a Bayesian approach to this problem, and apply it to the example of proton Compton scattering. Chiral Effective Field Theory ($χ$EFT) predicts the functional form of the scattering amplitude for this reaction, so that the electromagnetic polarizabilities of the nucleon can be inferred from data. With increasing photon energy, both experimental rates and sensitivities to polarizabilities increase, but the accuracy of $χ$EFT decreases. Our physics-based model of $χ$EFT truncation errors is combined with present knowledge of the polarizabilities and reasonable assumptions about experimental capabilities at HI$γ$S and MAMI to assess the information gain from measuring specific observables at specific kinematics, \emph{i.e.}, to determine the relative amount by which new data are apt to shrink uncertainties. The strongest gains would likely come from new data on the spin observables $Σ_{2x}$ and $Σ_{2x^\prime}$ at $ω\simeq140$ to $200$ MeV and $40^\circ$ to $120^\circ$. These would tightly constrain $γ_{E1E1}-γ_{E1M2}$. New data on the differential cross section between $100$ and $200$\,MeV and over a wide angle range will substantially improve constraints on $α_{E1}-β_{M1}$, $γ_π$ and $γ_{M1M1}-γ_{M1E2}$. Good signals also exist around $160$ MeV for $Σ_3$ and $Σ_{2z^\prime}$. Such data will be pivotal in the continuing quest to pin down the scalar polarizabilities and refine understanding of the spin polarizabilities.