论文标题

关于费米 - 拉特大麻与低能的物理关联

On the physical association of Fermi-LAT blazars with their low-energy counterparts

论文作者

de Menezes, Raniere, D'Abrusco, Raffaele, Massaro, Francesco, Gasparrini, Dario, Nemmen, Rodrigo

论文摘要

将伽马射线的来源与低能能相交是现代伽马射线天文学的主要挑战之一。在第四个费米大面积望远镜源目录(4FGL)的背景下,关联主要依靠参数作为明显的大小,集成通量和伽马射线源与其低能候选候选候选物之间的角度分离。在这项工作中,我们提出了新的可能性比率和一种补充监督的学习技术,以将4FGL的伽马射线布拉扎尔联系起来,仅基于频谱参数,例如伽马射线光子指数,中饰面颜色和放射状态。在可能性比率方法中,我们与4FGL进行了交叉匹配的Blazar样无线电大声源目录,并将最终的候选对应物与伽马射线Blazar locus中列出的来源进行比较,以计算1138个对应物的关联概率。在监督的学习方法中,我们以869个高信任的Blazar协会和711个假货协会训练随机森林算法,然后计算1311候选人的关联概率。提供了与我们方法相关的所有4FGL Blazar候选者的列表,以指导未来的光学光谱后续观察。

Associating gamma-ray sources to their low-energy counterparts is one of the major challenges of modern gamma-ray astronomy. In the context of the Fourth Fermi Large Area Telescope Source Catalog (4FGL), the associations rely mainly on parameters as apparent magnitude, integrated flux, and angular separation between the gamma-ray source and its low-energy candidate counterpart. In this work we propose a new use of likelihood ratio and a complementary supervised learning technique to associate gamma-ray blazars in 4FGL, based only on spectral parameters as gamma-ray photon index, mid-infrared colors and radio-loudness. In the likelihood ratio approach, we crossmatch the WISE Blazar-Like Radio-Loud Sources catalog with 4FGL and compare the resulting candidate counterparts with the sources listed in the gamma-ray blazar locus to compute an association probability for 1138 counterparts. In the supervised learning approach, we train a random forest algorithm with 869 high confidence blazar associations and 711 fake associations, and then compute an association probability for 1311 candidate counterparts. A list with all 4FGL blazar candidates of uncertain type associated by our method is provided to guide future optical spectroscopic follow up observations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源