论文标题
来自编织张量类别的循环辫子组的表示
Representations of the loop braid groups from braided tensor categories
论文作者
论文摘要
循环辫子组是$ \ mathbb {r}^3 $的无结与圆的运动组。在本文中,我们通过受到物质的二维拓扑阶段启发的方法来研究它们的表示。原则上,$ \ mathbb {r}^3 $中环的运动减少到二维切片平面中的点的运动。我们从编织张量类别及其辫子组表示方面意识到了这种物理图片。
The loop braid group is the motion group of unknotted oriented circles in $\mathbb{R}^3$. In this paper, we study their representations through the approach inspired by two dimensional topological phases of matter. In principle, the motion of loops in $\mathbb{R}^3$ reduces to the motions of points in a two dimensional sliced plane. We realize this physical picture in terms of braided tensor categories and their braid group representations.