论文标题
通过通信延迟安排相关机器上的优先限制的作业
Scheduling Precedence-Constrained Jobs on Related Machines with Communication Delay
论文作者
论文摘要
我们考虑在有任意的,固定的通信延迟$ρ$的情况下,安排$ n $优先限制的工作的问题。我们考虑了一个允许作业重复的模型,即在多台机器上处理同一作业,如我们所示,可以通过对数因素来减少时间表(即其makepan)的长度。我们的主要结果是$ o(\ log m \ logρ/ \ log \ log \ log \ logρ)$ - 近似算法用于最小化makepan,假设最小的makepan至少为$ρ$。我们的算法是基于为该问题解决线性编程放松的基础,其中包括精心设计的约束,捕获了通信延迟,优先级要求,变化速度和工作重复之间的相互作用。我们的结果建立在以前的两条工作线上,一个具有通信延迟但相同的机器(Lepere,Rapine 2002),另一个具有与统一相关的机器,但没有通信延迟(Chudak,Shmoys,1999年)。接下来,我们表明我们的数学程序的完整性差距为$ω(\ sqrt {\ logρ})$。我们的间隙构造采用扩展图,并利用稳健扩展的属性及其对较长长度的路径的概括。最后,我们量化了通过通信延迟进行调度时重复的优势。我们表明,没有重复的最佳时间表可以使PAN $ω(ρ/\logρ)$或$ω(\ log m/\ log \ log \ log \ log m)$或$ω(\ log n/\ log n/\ log \ log \ log \ log \ log n)$乘以允许重复的最佳时间表的最佳时间表。但是,我们提出了一种多项式时间算法,以将任何时间表转换为时间表,而无需重复以$ o(\ log^2 n \ log m)$ rakepan的费用增加。加上我们的MakePAN近似算法允许重复的时间表,这还产生了不允许重复的设置的Polyrogarithmic-Approximation算法。
We consider the problem of scheduling $n$ precedence-constrained jobs on $m$ uniformly-related machines in the presence of an arbitrary, fixed communication delay $ρ$. We consider a model that allows job duplication, i.e. processing of the same job on multiple machines, which, as we show, can reduce the length of a schedule (i.e., its makespan) by a logarithmic factor. Our main result is an $O(\log m \log ρ/ \log \log ρ)$-approximation algorithm for minimizing makespan, assuming the minimum makespan is at least $ρ$. Our algorithm is based on rounding a linear programming relaxation for the problem, which includes carefully designed constraints capturing the interaction among communication delay, precedence requirements, varying speeds, and job duplication. Our result builds on two previous lines of work, one with communication delay but identical machines (Lepere, Rapine 2002) and the other with uniformly-related machines but no communication delay (Chudak, Shmoys 1999). We next show that the integrality gap of our mathematical program is $Ω(\sqrt{\log ρ})$. Our gap construction employs expander graphs and exploits a property of robust expansion and its generalization to paths of longer length. Finally, we quantify the advantage of duplication in scheduling with communication delay. We show that the best schedule without duplication can have makespan $Ω(ρ/\log ρ)$ or $Ω(\log m/\log\log m)$ or $Ω(\log n/\log \log n)$ times that of an optimal schedule allowing duplication. Nevertheless, we present a polynomial time algorithm to transform any schedule to a schedule without duplication at the cost of a $O(\log^2 n \log m)$ factor increase in makespan. Together with our makespan approximation algorithm for schedules allowing duplication, this also yields a polylogarithmic-approximation algorithm for the setting where duplication is not allowed.