论文标题
零夸大计数时间序列的ARMA型号
ARMA Models for Zero Inflated Count Time Series
论文作者
论文摘要
零通货膨胀是一种普遍的滋扰,同时监测疾病的进展。本文提出了一个新的观察驱动模型,用于零膨胀和过度分散的计数时间序列。假定给定过去历史记录的计数和有关协变量的可用信息被认为是分布的,作为泊松分布的混合物和分布在零时的分布,而时间依赖的混合概率为$π_t$。由于计数数据通常来自过度分散,因此使用伽马分布来建模过剩变化,从而导致零膨胀的负二项式(NB)回归模型,其平均参数$λ_t$。具有自动回归和移动平均值(ARMA)类型项,协变量,季节性和趋势的线性预测指标,通过规范链路通用线性模型安装到$λ_T$和$π_T$。使用迭代算法(例如牛顿·拉夫森(NR))以及期望和最大化(EM)等迭代算法的最大可能性进行估计。给出了估计量的一致性和渐近正态性的理论结果。使用深入的模拟研究和登革热数据集说明了所提出的模型。
Zero inflation is a common nuisance while monitoring disease progression over time. This article proposes a new observation driven model for zero inflated and over-dispersed count time series. The counts given the past history of the process and available information on covariates is assumed to be distributed as a mixture of a Poisson distribution and a distribution degenerate at zero, with a time dependent mixing probability, $π_t$. Since, count data usually suffers from overdispersion, a Gamma distribution is used to model the excess variation, resulting in a zero inflated Negative Binomial (NB) regression model with mean parameter $λ_t$. Linear predictors with auto regressive and moving average (ARMA) type terms, covariates, seasonality and trend are fitted to $λ_t$ and $π_t$ through canonical link generalized linear models. Estimation is done using maximum likelihood aided by iterative algorithms, such as Newton Raphson (NR) and Expectation and Maximization (EM). Theoretical results on the consistency and asymptotic normality of the estimators are given. The proposed model is illustrated using in-depth simulation studies and a dengue data set.