论文标题

振幅和4D高斯理论

Amplitudes and 4D Gauss-Bonnet Theory

论文作者

Bonifacio, James, Hinterbichler, Kurt, Johnson, Laura A.

论文摘要

最近有人认为,高维高斯和洛夫洛克相互作用可能存在非平凡的四维极限,这可能会提供漏洞,允许新的四维引力理论,可能是没有标准的Lagrangian的。我们通过研究树级的重力散射幅度来调查这一说法,使我们能够独立于拉格朗日得出结论。通过采用高斯理论的高维散射幅度的四维极限,我们发现四维幅度与一般相对性不同。但是,这些幅度并不是什么新鲜事物,因为它们都来自某些标量调整理论。并不会导致围绕平坦空间的无限强耦合的非平凡极限导致$(\ partialϕ)^4 $理论。我们认为,除了直接构建壳体振幅外,不能在任何维度上有任何六源性引力四点振幅。特别是,超出了一般相对性的四个维度,在四个维度上没有新的此类幅度。我们还在任意维度中的一般相对论和高斯理论中的重力 - 格拉维顿散射的自旋平均横截面上介绍了一些新结果。

It has recently been argued that there may be a nontrivial four-dimensional limit of the higher-dimensional Gauss--Bonnet and Lovelock interactions and that this might provide a loophole allowing for new four-dimensional gravitational theories, possibly without a standard Lagrangian. We investigate this claim by studying tree-level graviton scattering amplitudes, allowing us to draw conclusions independently of the Lagrangian. By taking four-dimensional limits of higher-dimensional scattering amplitudes of the Gauss--Bonnet theory, we find four-dimensional amplitudes that are different from general relativity; however, these amplitudes are not new since they all come from certain scalar-tensor theories. The nontrivial limit that does not lead to infinite strong coupling around flat space leads to $(\partialϕ)^4$ theory. We argue that there cannot be any six-derivative purely gravitational four-point amplitudes in any dimension other than those coming from Lovelock theory by directly constructing the on-shell amplitudes. In particular, there can be no new such amplitudes in four dimensions beyond those of general relativity. We also present some new results on the spin-averaged cross section for graviton-graviton scattering in general relativity and Gauss--Bonnet theory in arbitrary dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源