论文标题

预测因子:TOR网络的预测交通总结控制

PredicTor: Predictive Congestion Control for the Tor Network

论文作者

Fiedler, Felix, Döpmann, Christoph, Tschorsch, Florian, Lucia, Sergio

论文摘要

在TOR网络中,通过多层体系结构来实现匿名性,该体系结构以复杂的网络为代价。在此网络中安排数据是一项具有挑战性的任务,当前的方法表明无法避免网络拥塞和分配公平数据速率。我们提出了一种分布式模型预测控制方法的预测变量,以应对这些挑战。预测因子旨在安排TOR体系结构各个节点的传入和传出数据速率,从而导致可扩展方法。我们通过与相邻节点交换预测行为的信息成功地避免了交通拥堵。此外,我们以关注资源的公平分配来制定预测指标,并证明一种新颖的基于优化的公平方法。我们提出的控制器通过流行的网络模拟器NS-3进行评估,我们将其与当前的TOR调度程序以及另一个最近提出的增强作用进行了比较。预测因子比以前的方法显示出显着改善,尤其是在潜伏期方面。

In the Tor network, anonymity is achieved through a multi-layered architecture, which comes at the cost of a complex network. Scheduling data in this network is a challenging task and the current approach shows to be incapable of avoiding network congestion and allocating fair data rates. We propose PredicTor, a distributed model predictive control approach, to tackle these challenges. PredicTor is designed to schedule incoming and outgoing data rates on individual nodes of the Tor architecture, leading to a scalable approach. We successfully avoid congestion through exchanging information of predicted behavior with adjacent nodes. Furthermore, we formulate PredicTor with a focus on fair allocation of resources, for which we present and proof a novel optimization-based fairness approach. Our proposed controller is evaluated with the popular network simulator ns-3, where we compare it with the current Tor scheduler as well as with another recently proposed enhancement. PredicTor shows significant improvements over the previous approaches, especially with respect to latency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源