论文标题

迭代的对数的法律,用于随机迪里奇莱特系列

Law of the iterated logarithm for a random Dirichlet series

论文作者

Aymone, Marco, Frómeta, Susana, Misturini, Ricardo

论文摘要

令$(x_n)_ {n \ in \ mathbb {n}} $为i.i.d的序列。带有分布的随机变量$ \ mathbb p(x_1 = 1)= \ mathbb p(x_1 = -1)= 1/2 $。令$ f(σ)= \ sum_ {n = 1}^\ infty x_nn^{ - σ} $。我们证明,以下几乎可以肯定地\ begin {equation*} \ limsup_ {σ\ to 1/2^+} \ frac {f(σ)} {\ sqrt {2 \ sqrt {2 \ mathbb e f(σ) \ end {equation*}

Let $(X_n)_{n\in \mathbb{N}}$ be a sequence of i.i.d. random variables with distribution $\mathbb P(X_1=1)=\mathbb P(X_1=-1)=1/2$. Let $F(σ)=\sum_{n=1}^\infty X_nn^{-σ}$. We prove that the following holds almost surely \begin{equation*} \limsup_{σ\to 1/2^+}\frac{F(σ)}{\sqrt{2\mathbb E F(σ)^2\log\log \mathbb E F(σ)^2}}=1. \end{equation*}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源