论文标题

1D中复杂时间演变的局部性estimes

Locality estimes for complex time evolution in 1D

论文作者

Pérez-García, David, Pérez-Hernández, Antonio

论文摘要

这是一种普遍的信念,即在短范围1D量子系统中没有热相变。但是,严格证明的唯一已知情况是针对有限范围翻译不变相互作用的特定情况。该证明是由阿拉基(Araki)在1969年的开创性论文中获得的,这是由于时间进化操作员的开创性局部性估计值,该估计值使他能够在可观察到的局部观察到的情况下证明其在整个复杂平面上的典型性。但是,到目前为止,如果一个人在相互作用中允许指数尾部,则没有数学证据表明1D热相变的吸收。在这项工作中,我们将Araki的结果扩展到包括指数(或更快)的尾巴。我们的主要结果是在真实线周围合适的条上可观察到的局部观察者的时间进化运算符的分析性。结果,我们得到一维中的热状态表现出相关性的指数衰减,而相关温度与相互作用衰减的指数衰减为零,从而恢复了Araki的结果作为特定情况。然而,我们的结果仍然打开了一维热距离相变的可能性。最后,我们通过Cirac等人的全息二元性将结果应用于2D晶格的频谱差距问题(PEPS)。

It is a generalized belief that there are no thermal phase transitions in short range 1D quantum systems. However, the only known case for which this is rigorously proven is for the particular case of finite range translational invariant interactions. The proof was obtained by Araki in his seminal paper of 1969 as a consequence of pioneering locality estimates for the time-evolution operator that allowed him to prove its analiticity on the whole complex plane, when applied to a local observable. However, as for now there is no mathematical proof of the abscence of 1D thermal phase transitions if one allows exponential tails in the interactions. In this work we extend Araki's result to include exponential (or faster) tails. Our main result is the analyticity of the time-evolution operator applied on a local observable on a suitable strip around the real line. As a consequence we obtain that thermal states in 1D exhibit exponential decay of correlations above a threshold temperature that decays to zero with the exponent of the interaction decay, recovering Araki's result as a particular case. Our result however still leaves open the possibility of 1D thermal short range phase transitions. We conclude with an application of our result to the spectral gap problem for Projected Entangled Pair States (PEPS) on 2D lattices, via the holographic duality due to Cirac et al.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源