论文标题

通过分析卷积痕迹来检测深泡剂检测

DeepFake Detection by Analyzing Convolutional Traces

论文作者

Guarnera, Luca, Giudice, Oliver, Battiato, Sebastiano

论文摘要

由于有可能使用深度学习工具(主要基于临时生成的对抗网络(GAN))创建令人难以置信的逼真图像,因此当今的深层现象已经变得非常流行。在这项工作中,我们着重于对人面部深层效果的分析,目的是创建一种新的检测方法,能够检测图像中隐藏的取证跟踪:图像生成过程中剩下的一种指纹。通过期望最大化(EM)算法,提出的技术提取了一组专门介绍的局部特征,以建模基础卷积生成过程。临时验证是通过对五个不同体系结构(GDWCT,Stargan,Attgan,stylegan,stylegan2)的幼稚分类器进行的实验测试来对Celeba数据集进行的,作为非伪装的基础真相。结果证明了该技术在区分不同架构和相应生成过程中的有效性。

The Deepfake phenomenon has become very popular nowadays thanks to the possibility to create incredibly realistic images using deep learning tools, based mainly on ad-hoc Generative Adversarial Networks (GAN). In this work we focus on the analysis of Deepfakes of human faces with the objective of creating a new detection method able to detect a forensics trace hidden in images: a sort of fingerprint left in the image generation process. The proposed technique, by means of an Expectation Maximization (EM) algorithm, extracts a set of local features specifically addressed to model the underlying convolutional generative process. Ad-hoc validation has been employed through experimental tests with naive classifiers on five different architectures (GDWCT, STARGAN, ATTGAN, STYLEGAN, STYLEGAN2) against the CELEBA dataset as ground-truth for non-fakes. Results demonstrated the effectiveness of the technique in distinguishing the different architectures and the corresponding generation process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源