论文标题

学习一个自适应模型,以实现极端低光的原始图像处理

Learning an Adaptive Model for Extreme Low-light Raw Image Processing

论文作者

Fu, Qingxu, Di, Xiaoguang, Zhang, Yu

论文摘要

低光的图像患有严重的噪音和低照明。当前经过实际图像训练的深度学习模型具有出色的降噪功能,但是必须手动选择比率参数以完成增强管道。在这项工作中,我们提出了一个自适应的低光原始图像增强网络,以避免参数手工制作并提高图像质量。提出的方法可以分为两个子模型:亮度预测(BP)和暴露转移(ES)。前者旨在通过估计指南曝光时间$ T_1 $来控制所得图像的亮度。后者学会了近似曝光变动操作员$ ES $,将带有实际曝光时间$ T_0 $的低光图像转换为带有指南曝光时间$ T_1 $的无噪声图像。此外,引入结构相似性(SSIM)损失和图像增强矢量(IEV)以促进图像质量,并提出了一个新的校园图像数据集(CID)来克服现有数据集的局限性并监督拟议模型的培训。使用所提出的模型,我们可以从单个原始图像中实现高质量的低光图像增强。在定量测试中,可以表明,与最先进的低光算法相比,所提出的方法的噪声水平估计值最低(NLE)得分最低,这表明表现出色的脱氧性能。此外,这些测试表明所提出的方法能够根据图像场景的内容自适应地控制全局图像亮度。最后,简要讨论了视频处理中的潜在应用。

Low-light images suffer from severe noise and low illumination. Current deep learning models that are trained with real-world images have excellent noise reduction, but a ratio parameter must be chosen manually to complete the enhancement pipeline. In this work, we propose an adaptive low-light raw image enhancement network to avoid parameter-handcrafting and to improve image quality. The proposed method can be divided into two sub-models: Brightness Prediction (BP) and Exposure Shifting (ES). The former is designed to control the brightness of the resulting image by estimating a guideline exposure time $t_1$. The latter learns to approximate an exposure-shifting operator $ES$, converting a low-light image with real exposure time $t_0$ to a noise-free image with guideline exposure time $t_1$. Additionally, structural similarity (SSIM) loss and Image Enhancement Vector (IEV) are introduced to promote image quality, and a new Campus Image Dataset (CID) is proposed to overcome the limitations of the existing datasets and to supervise the training of the proposed model. Using the proposed model, we can achieve high-quality low-light image enhancement from a single raw image. In quantitative tests, it is shown that the proposed method has the lowest Noise Level Estimation (NLE) score compared with the state-of-the-art low-light algorithms, suggesting a superior denoising performance. Furthermore, those tests illustrate that the proposed method is able to adaptively control the global image brightness according to the content of the image scene. Lastly, the potential application in video processing is briefly discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源