论文标题
代表贝叶斯风险分解和多源域适应
Representation Bayesian Risk Decompositions and Multi-Source Domain Adaptation
论文作者
论文摘要
我们考虑表示表示(假设类$ \ MATHCAL {H} = \ MATHCAL {F} \ CRICC \ MATHCAL {G} $),其中培训和测试分布可能会有所不同。最近的研究提供了针对域不变表示学习的提示和失败示例,这是解决此问题的一种常见方法,但是所提供的解释有些不同,并且没有提供统一的图片。在本文中,我们提供了新的风险分解,从而提供了更细粒度的解释并阐明潜在的概括问题。对于单源结构域的适应,我们通过自然混合论证给出了目标风险的确切分解(平等),作为三个因素的总和:(1)源风险,(2)表示条件标签差异和(3)表示协方差转移。我们为多源情况得出了类似的分解。这些分解揭示了因素(2)和(3)是未能概括的确切原因。例如,我们证明了域对抗性神经网络(DANN)试图正规化(3),但(2)却错过了(2),而最近的技术不变风险最小化(IRM)试图考虑(2),但不考虑(3)。我们还通过实验验证了我们的观察结果。
We consider representation learning (hypothesis class $\mathcal{H} = \mathcal{F}\circ\mathcal{G}$) where training and test distributions can be different. Recent studies provide hints and failure examples for domain invariant representation learning, a common approach for this problem, but the explanations provided are somewhat different and do not provide a unified picture. In this paper, we provide new decompositions of risk which give finer-grained explanations and clarify potential generalization issues. For Single-Source Domain Adaptation, we give an exact decomposition (an equality) of the target risk, via a natural hybrid argument, as sum of three factors: (1) source risk, (2) representation conditional label divergence, and (3) representation covariate shift. We derive a similar decomposition for the Multi-Source case. These decompositions reveal factors (2) and (3) as the precise reasons for failure to generalize. For example, we demonstrate that domain adversarial neural networks (DANN) attempt to regularize for (3) but miss (2), while a recent technique Invariant Risk Minimization (IRM) attempts to account for (2) but does not consider (3). We also verify our observations experimentally.