论文标题
可定义的卷积和责备keisler措施
Definable convolution and idempotent Keisler measures
论文作者
论文摘要
我们对Keisler措施的卷积操作进行了系统的研究,在类型的情况下概括了Newelski的工作。适应Glicksberg的结果,我们表明,一般稳定(或可以定义的,假设nip)的支持是不错的半群,并且将稳定组中的基于势力的措施分类为类型可定义的亚组的不变度量。我们在NIP理论中建立了卷积图的左 - 接触性,并用它来表明,在这种情况下,有限令人满意的度量的卷积半群是对特定的Ellis Semigroup的同构。
We initiate a systematic study of the convolution operation on Keisler measures, generalizing the work of Newelski in the case of types. Adapting results of Glicksberg, we show that the supports of generically stable (or just definable, assuming NIP) measures are nice semigroups, and classify idempotent measures in stable groups as invariant measures on type-definable subgroups. We establish left-continuity of the convolution map in NIP theories, and use it to show that the convolution semigroup on finitely satisfiable measures is isomorphic to a particular Ellis semigroup in this context.