论文标题

DMRG强烈互动的研究$ \ Mathbb {Z} _2 $ Flatbands:一种受扭曲双层石墨烯启发的玩具模型

DMRG study of strongly interacting $\mathbb{Z}_2$ flatbands: a toy model inspired by twisted bilayer graphene

论文作者

Eugenio, P. Myles, Dağ, Ceren B.

论文摘要

通过使用最低的Landau级别(LLL)波函数来研究占据相反(或类似)拓扑量子数(Chern $ = \ pm1 $)的电子带(Chern $ = \ pm1 $)的强烈相互作用。更确切地说,我们在半填充时确定了两种情况的基态:(i)lll具有相反的磁场符号,因此相反的chern数字; (ii)LLL具有相同的磁场。在第一种情况下(我们认为是受扭曲双层石墨烯的精神对称连续性模型启发的玩具模型),相反的Chern Lll是Kramer对,因此存在时间反向对称性($ \ MATHBB {Z {Z} _2 _2 $)。打开排斥性相互作用驱动系统自发打破时间反转对称性 - 一个由一个粒子每个lll轨道描述的量子异常的霍尔状态,所有正正chern $ |+| ++ \ cdots+> $+> $或所有负$ | - \ cdots-> $。相反,如果在同类数字的电子之间进行相互作用,则基态为$ su(2)$ ferromagnet,总旋转指向任意方向,就像$ν= 1 $ spin-$ spin-$ \ frac {1} {1} {2} $ Quantum Hall Ferromagnet。基础状态及其对这两种情况的激发均进行了分析,并通过密度矩阵重质化组(DMRG)和精确的对角线化进一步称赞。

Strong interactions between electrons occupying bands of opposite (or like) topological quantum numbers (Chern$=\pm1$), and with flat dispersion, are studied by using lowest Landau level (LLL) wavefunctions. More precisely, we determine the ground states for two scenarios at half-filling: (i) LLL's with opposite sign of magnetic field, and therefore opposite Chern number; and (ii) LLL's with the same magnetic field. In the first scenario -- which we argue to be a toy model inspired by the chirally symmetric continuum model for twisted bilayer graphene -- the opposite Chern LLL's are Kramer pairs, and thus there exists time-reversal symmetry ($\mathbb{Z}_2$). Turning on repulsive interactions drives the system to spontaneously break time-reversal symmetry -- a quantum anomalous Hall state described by one particle per LLL orbital, either all positive Chern $|++\cdots+>$ or all negative $|--\cdots->$. If instead, interactions are taken between electrons of like-Chern number, the ground state is an $SU(2)$ ferromagnet, with total spin pointing along an arbitrary direction, as with the $ν=1$ spin-$\frac{1}{2}$ quantum Hall ferromagnet. The ground states and some of their excitations for both of these scenarios are argued analytically, and further complimented by density matrix renormalization group (DMRG) and exact diagonalization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源