论文标题

用于制定数字干预措施的微型助剂试验:数据分析方法

The Micro-Randomized Trial for Developing Digital Interventions: Data Analysis Methods

论文作者

Qian, Tianchen, Russell, Michael A., Collins, Linda M., Klasnja, Predrag, Lanza, Stephanie T., Yoo, Hyesun, Murphy, Susan A.

论文摘要

尽管使用移动和可穿戴技术的使用却非常兴奋,目的是在人们经历日常生活时提供干预措施,但数据分析方法用于构建和优化数字干预措施的滞后。在这里,我们阐明了微型试验(MRTS)的主要和次级分析的数据分析方法,这是一种实验设计,可优化数字及时的自适应干预措施。我们提供了用于用于数字干预开发的因果“游览”效应的定义。我们介绍了加权和中心最小二乘(WCLS)的估计器,该估计量为来自MRT数据的数字干预提供了一致的因果偏移效应估计量。我们描述了如何使用标准统计软件(例如SAS或R)获得WCLS估计量以及相关的测试统计数据,在整个过程中,我们都使用HeartSteps(旨在增加久坐的个体之间的体育活动,以说明潜在的主要和次要分析)。

Although there is much excitement surrounding the use of mobile and wearable technology for the purposes of delivering interventions as people go through their day-to-day lives, data analysis methods for constructing and optimizing digital interventions lag behind. Here, we elucidate data analysis methods for primary and secondary analyses of micro-randomized trials (MRTs), an experimental design to optimize digital just-in-time adaptive interventions. We provide a definition of causal "excursion" effects suitable for use in digital intervention development. We introduce the weighted and centered least-squares (WCLS) estimator which provides consistent causal excursion effect estimators for digital interventions from MRT data. We describe how the WCLS estimator along with associated test statistics can be obtained using standard statistical software such as SAS or R. Throughout we use HeartSteps, an MRT designed to increase physical activity among sedentary individuals, to illustrate potential primary and secondary analyses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源