论文标题

$λ$ - 定型的coset cft的免费场景

A free field perspective of $λ$-deformed coset CFT's

论文作者

Georgiou, George, Sfetsos, Konstantinos, Siampos, Konstantinos

论文摘要

我们通过在cosets的自由野外点附近设置$ 1/k $扰动扩展,继续研究$λ$ - 定型的$σ$ - 模型,尤其是$λ$ -Deformed $ su(2)/u(1)$ coset cft。我们构建了一个相互作用的场理论,其中所有变形效应在相互作用顶点中明显编码。使用此功能,我们重现已知的$β$功能和复合算子的异常尺寸,这些算子扰乱了整形点。我们介绍了$λ$的parafermions,在其表达中具有必不可少的威尔逊阶段。随后,我们计算它们的异常尺寸及其四点功能,如变形的确切功能,并在$ K $扩展中领先顺序。这些副作用的奇数函数如在保形情况下消失了。

We continue our study of $λ$-deformed $σ$-models by setting up a $1/k$ perturbative expansion around the free field point for cosets, in particular for the $λ$-deformed $SU(2)/U(1)$ coset CFT. We construct an interacting field theory in which all deformation effects are manifestly encoded in the interaction vertices. Using this we reproduce the known $β$-function and the anomalous dimension of the composite operator perturbing away from the conformal point. We introduce the $λ$-dressed parafermions which have an essential Wilson-like phase in their expressions. Subsequently, we compute their anomalous dimension, as well as their four-point functions, as exact functions of the deformation and to leading order in the $k$ expansion. Correlation functions with an odd number of these parafermions vanish as in the conformal case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源