论文标题
体内高光谱性喉癌检测的时空深度学习方法
Spatio-spectral deep learning methods for in-vivo hyperspectral laryngeal cancer detection
论文作者
论文摘要
头颈部肿瘤的早期检测对于患者生存至关重要。通常,诊断是基于对喉的内窥镜检查进行的,然后进行活检和组织学分析,从而导致高观察者间变异性,这是由于主观评估而引起的。在这方面,独立于临床医生的早期非侵入性诊断将是一个有价值的工具。最近的一项研究表明,高光谱成像(HSI)可用于非侵入性检测头部和颈部肿瘤,因为癌前病变或癌变病变显示出将其与健康组织区分开的特定光谱特征。但是,由于高光谱变化,各种图像干扰和数据的高维度,HSI数据处理具有挑战性。因此,自动HSI分析的性能受到限制,到目前为止,大多数情况下都进行了深度学习。在这项工作中,我们分析了体内高光谱喉癌检测的深度学习技术。为此,我们设计和评估使用2D空间或3D时空传播卷积与最先进的Densenet架构相结合的卷积神经网络(CNN)。为了进行评估,我们使用带有口腔或口咽HSI的体内数据集。总体而言,我们提出了基于HSI的体内喉部癌症检测的多种深度学习技术,我们表明,从空间和光谱域中共同学习可显着提高分类准确性。我们的3D时空光谱densenet的平均准确度为81%。
Early detection of head and neck tumors is crucial for patient survival. Often, diagnoses are made based on endoscopic examination of the larynx followed by biopsy and histological analysis, leading to a high inter-observer variability due to subjective assessment. In this regard, early non-invasive diagnostics independent of the clinician would be a valuable tool. A recent study has shown that hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors, as precancerous or cancerous lesions show specific spectral signatures that distinguish them from healthy tissue. However, HSI data processing is challenging due to high spectral variations, various image interferences, and the high dimensionality of the data. Therefore, performance of automatic HSI analysis has been limited and so far, mostly ex-vivo studies have been presented with deep learning. In this work, we analyze deep learning techniques for in-vivo hyperspectral laryngeal cancer detection. For this purpose we design and evaluate convolutional neural networks (CNNs) with 2D spatial or 3D spatio-spectral convolutions combined with a state-of-the-art Densenet architecture. For evaluation, we use an in-vivo data set with HSI of the oral cavity or oropharynx. Overall, we present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI and we show that jointly learning from the spatial and spectral domain improves classification accuracy notably. Our 3D spatio-spectral Densenet achieves an average accuracy of 81%.