论文标题
与第一和第二梯度连续图相比,粒子系统的数值研究:变形和断裂现象
Numerical investigation of a particle system compared with first and second gradient continua: Deformation and fracture phenomena
论文作者
论文摘要
通过基于质心法律相互作用的粒子组成的离散系统经过数值研究。系统的元素在平面中移动,并且相互作用的范围可以从更本地形式(首先接近相互作用)变化,直到通用的n阶相互作用。该模型的目的是重现具有标准(Cauchy模型)或广义(第二梯度)变形能密度的可变形物体的行为。数值结果表明,所考虑的离散系统可以有效地再现第一梯度连续性的行为。此外,还引入了断裂算法,并提供了第一和第二个邻居模拟之间的一些比较。
A discrete system constituted of particles interacting by means of a centroid-based law is numerically investigated. The elements of the system move in the plane, and the range of the interaction can be varied from a more local form (first-neighbours interaction) up to a generalized nth order interaction. The aim of the model is to reproduce the behaviour of deformable bodies with standard (Cauchy model) or generalized (second gradient) deformation energy density. The numerical results suggest that the considered discrete system can effectively reproduce the behaviour of first and second gradient continua. Moreover, a fracture algorithm is introduced and some comparison between firstand second-neighbour simulations are provided.