论文标题

随机临床试验中的协变量调整的倾向评分加权

Propensity Score Weighting for Covariate Adjustment in Randomized Clinical Trials

论文作者

Zeng, Shuxi, Li, Fan, Wang, Rui, Li, Fan

论文摘要

基线特征的机会失衡在随机临床试验中很常见。回归调整(例如协方差分析(ANCOVA))通常用于解释治疗效果估计值的不平衡和提高精度。一个客观的替代方法是通过倾向得分的反可能性加权(IPW)。尽管IPW和ANCOVA在渐近上是同等的,但前者可能在有限样品中表现出劣等的性能。在本文中,我们指出IPW是一般平衡权重的特殊情况,并主张使用重叠加权(OW)进行协变量调整。当通过逻辑回归估算倾向分数时,OW方法具有完全消除偶然失衡的独特优势。我们表明,OW估计器与最有效的ANCOVA估计器和IPW估计器的连续结果相同的半参数差异下限,并在估计添加剂和比率估计值时得出OW的闭合形式方差估计器。通过广泛的模拟,我们证明OW在有限样本中始终优于IPW,并在治疗程度异质性的程度异质性或结果指定时提高了ANCOVA和增强IPW的效率。我们将拟议的OW估计量应用于最佳研究(BESTAIR)随机试验的呼吸暂停干预措施,以评估持续的气道压力对患者健康结果的影响。所有讨论的倾向得分加权方法均在R软件包PSWEIGHT中实现。

Chance imbalance in baseline characteristics is common in randomized clinical trials. Regression adjustment such as the analysis of covariance (ANCOVA) is often used to account for imbalance and increase precision of the treatment effect estimate. An objective alternative is through inverse probability weighting (IPW) of the propensity scores. Although IPW and ANCOVA are asymptotically equivalent, the former may demonstrate inferior performance in finite samples. In this article, we point out that IPW is a special case of the general class of balancing weights, and advocate to use overlap weighting (OW) for covariate adjustment. The OW method has a unique advantage of completely removing chance imbalance when the propensity score is estimated by logistic regression. We show that the OW estimator attains the same semiparametric variance lower bound as the most efficient ANCOVA estimator and the IPW estimator for a continuous outcome, and derive closed-form variance estimators for OW when estimating additive and ratio estimands. Through extensive simulations, we demonstrate OW consistently outperforms IPW in finite samples and improves the efficiency over ANCOVA and augmented IPW when the degree of treatment effect heterogeneity is moderate or when the outcome model is incorrectly specified. We apply the proposed OW estimator to the Best Apnea Interventions for Research (BestAIR) randomized trial to evaluate the effect of continuous positive airway pressure on patient health outcomes. All the discussed propensity score weighting methods are implemented in the R package PSweight.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源