论文标题

学习自动驾驶汽车的自我意识:探索多感官增量模型

Learning Self-Awareness for Autonomous Vehicles: Exploring Multisensory Incremental Models

论文作者

Ravanbakhsh, Mahdyar, Baydoun, Mohamad, Campo, Damian, Marin, Pablo, Martin, David, Marcenaro, Lucio, Regazzoni, andCarlo

论文摘要

自动驾驶汽车的技术接近替代了具有高级决策能力的人造系统。在这方面,系统必须了解通常的车辆行为,以预测迫在眉睫的困难。自主剂应能够在学习看不见的新颖概念的同时与多模式动态环境不断相互作用。这种环境通常无法用于培训代理商,因此代理应该了解其自身的能力和局限性。这种理解通常称为自我意识。本文提出了来自不同来源的信号的多模式自我意识建模。本文展示了如何在通用框架下使用不同的机器学习技术,以使用动态贝叶斯网络来学习单一模式模型。在列出的情况下,采用了概率切换模型和一组生成对抗网络来分别对车辆的位置和视觉信息进行建模。我们的结果包括在真实车辆上进行的实验,突出了所提出的方法在检测实际情况下异常的潜力。

The technology for autonomous vehicles is close to replacing human drivers by artificial systems endowed with high-level decision-making capabilities. In this regard, systems must learn about the usual vehicle's behavior to predict imminent difficulties before they happen. An autonomous agent should be capable of continuously interacting with multi-modal dynamic environments while learning unseen novel concepts. Such environments are not often available to train the agent on it, so the agent should have an understanding of its own capacities and limitations. This understanding is usually called self-awareness. This paper proposes a multi-modal self-awareness modeling of signals coming from different sources. This paper shows how different machine learning techniques can be used under a generic framework to learn single modality models by using Dynamic Bayesian Networks. In the presented case, a probabilistic switching model and a bank of generative adversarial networks are employed to model a vehicle's positional and visual information respectively. Our results include experiments performed on a real vehicle, highlighting the potentiality of the proposed approach at detecting abnormalities in real scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源