论文标题

倾向于具有可扩展功能和纹理压缩的分析友好的面部表示

Towards Analysis-friendly Face Representation with Scalable Feature and Texture Compression

论文作者

Wang, Shurun, Wang, Shiqi, Yang, Wenhan, Zhang, Xinfeng, Wang, Shanshe, Ma, Siwei, Gao, Wen

论文摘要

它起着基本作用,可以将视觉信息紧密地表示以无数视觉数据为中心的应用程序优化最终实用程序。提出了许多方法,以有效地压缩为人类视觉感知和机器智能的纹理和视觉特征,因此,工作的工作少于研究它们之间的相互作用。在这里,我们研究了功能和纹理压缩的集成,并表明可以以层次结构的方式实现通用和协作的视觉信息表示形式。特别是,我们在可扩展的编码框架中研究功能和纹理压缩,基本层充当深度学习功能和增强层目标,可完美地重建纹理。基于深神经网络的强生成能力,基本特征层和增强层之间的差距进一步填充了特征级别的纹理重建,旨在从功能中进一步构建纹理表示。因此,可以在增强层中进一步传达原始纹理和重建纹理之间的残差。为了提高所提出的框架的效率,基础层神经网络以多任务方式进行训练,从而使学习的功能既享有高质量的重建和高精度分析。我们进一步证明了面部图像压缩中的框架和优化策略,并且在速率保真度和速率准确性方面已经实现了有希望的编码性能。

It plays a fundamental role to compactly represent the visual information towards the optimization of the ultimate utility in myriad visual data centered applications. With numerous approaches proposed to efficiently compress the texture and visual features serving human visual perception and machine intelligence respectively, much less work has been dedicated to studying the interactions between them. Here we investigate the integration of feature and texture compression, and show that a universal and collaborative visual information representation can be achieved in a hierarchical way. In particular, we study the feature and texture compression in a scalable coding framework, where the base layer serves as the deep learning feature and enhancement layer targets to perfectly reconstruct the texture. Based on the strong generative capability of deep neural networks, the gap between the base feature layer and enhancement layer is further filled with the feature level texture reconstruction, aiming to further construct texture representation from feature. As such, the residuals between the original and reconstructed texture could be further conveyed in the enhancement layer. To improve the efficiency of the proposed framework, the base layer neural network is trained in a multi-task manner such that the learned features enjoy both high quality reconstruction and high accuracy analysis. We further demonstrate the framework and optimization strategies in face image compression, and promising coding performance has been achieved in terms of both rate-fidelity and rate-accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源