论文标题

妻子:基于WiFi和基于视觉的智能面部手机情感识别

WiFE: WiFi and Vision based Intelligent Facial-Gesture Emotion Recognition

论文作者

Gu, Yu, Zhang, Xiang, Liu, Zhi, Ren, Fuji

论文摘要

情感是人工智能(AI)和人类心理健康的重要组成部分。当前的情绪识别研究主要集中在单一模态(例如面部表达)上,而人类情感表达本质上是多模式的。在本文中,我们提出了一个混合情绪识别系统,利用了两个情绪丰富和紧密耦合的方式,即面部表情和身体手势。但是,公正和细粒度的面部表情和手势识别仍然是一个主要问题。为此,与我们的竞争对手依靠接触甚至侵入性传感器不同,我们在采用基于视觉的面部表达时探索了商品WiFi信号,以获得无设备和非接触式手势识别。但是,存在两个设计挑战,即如何提高WiFi信号的灵敏度以及如何处理两种模式贡献的大容量,异质和非同步数据。对于前者,我们提出了一种基于里克里亚K因子理论的信号灵敏度增强方法。对于后者,我们将CNN和RNN组合在一起以挖掘双模式数据的高级特征,并执行得分级融合以进行细粒度识别。为了评估所提出的方法,我们构建了首个视觉CSI情感数据库(VCED)并进行广泛的实验。经验结果表明,双模式的优势通过达到七个情绪的83.24 \%识别精度,而分别通过基于手势的解决方案和基于面部的溶液的66.48%和66.48%和66.67%的识别精度。 VCED数据库下载链接是https://github.com/purpleleaves007/wife-dataset。

Emotion is an essential part of Artificial Intelligence (AI) and human mental health. Current emotion recognition research mainly focuses on single modality (e.g., facial expression), while human emotion expressions are multi-modal in nature. In this paper, we propose a hybrid emotion recognition system leveraging two emotion-rich and tightly-coupled modalities, i.e., facial expression and body gesture. However, unbiased and fine-grained facial expression and gesture recognition remain a major problem. To this end, unlike our rivals relying on contact or even invasive sensors, we explore the commodity WiFi signal for device-free and contactless gesture recognition, while adopting a vision-based facial expression. However, there exist two design challenges, i.e., how to improve the sensitivity of WiFi signals and how to process the large-volume, heterogeneous, and non-synchronous data contributed by the two-modalities. For the former, we propose a signal sensitivity enhancement method based on the Rician K factor theory; for the latter, we combine CNN and RNN to mine the high-level features of bi-modal data, and perform a score-level fusion for fine-grained recognition. To evaluate the proposed method, we build a first-of-its-kind Vision-CSI Emotion Database (VCED) and conduct extensive experiments. Empirical results show the superiority of the bi-modality by achieving 83.24\% recognition accuracy for seven emotions, as compared with 66.48% and 66.67% recognition accuracy by gesture-only based solution and facial-only based solution, respectively. The VCED database download link is https://github.com/purpleleaves007/WIFE-Dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源