论文标题

地形产生通过湍流融化和冻结来产生

Topography generation by melting and freezing in a turbulent shear flow

论文作者

Couston, Louis-Alexandre, Hester, Eric, Favier, Benjamin, Taylor, John R., Holland, Paul R., Jenkins, Adrian

论文摘要

我们报告了一项理想化的数值研究,该研究对与湍流,受浮力影响的剪切流相邻的融化和冷冻固体研究,以通过环境相位变化来提高我们对地形产生的理解。我们使用相位场方法将固体的热方程式与流体的Navier-Stokes方程进行动态化。我们研究了覆盖压力驱动的湍流的最初流动和水平固体边界的演变。我们假设流体的线性方程式并更改热膨胀系数的符号,以使背景密度分层是稳定,中性或不稳定的。我们发现,与平均流动方向对齐的通道是通过流体固定界面处的相变自发产生的。流体中的流向涡旋,界面形貌和固体影响中的温度场相互影响并调整直至获得统计稳态。在所有情况下,通道的峰值幅度大于大约10 $Δ_ν$,$Δ_ν$的粘性长度尺度比中性或稳定分层更大,但对于不稳定的分层而言,它更大,更持久。之所以发生这种情况,是因为稳定的分层使凉爽的熔体流体浮力使其免受进一步熔化的屏蔽,而不稳定的分层则使凉爽的熔体流体水槽通过升高的热羽流诱导进一步的融化。研究了流速和熔体速率的统计数据,我们发现模拟中出现的通道和龙骨并没有显着改变平均阻力系数。

We report an idealized numerical study of a melting and freezing solid adjacent to a turbulent, buoyancy-affected shear flow, in order to improve our understanding of topography generation by phase changes in the environment. We use the phase-field method to dynamically couple the heat equation for the solid with the Navier-Stokes equations for the fluid. We investigate the evolution of an initially-flat and horizontal solid boundary overlying a pressure-driven turbulent flow. We assume a linear equation of state for the fluid and change the sign of the thermal expansion coefficient, such that the background density stratification is either stable, neutral or unstable. We find that channels aligned with the direction of the mean flow are generated spontaneously by phase changes at the fluid-solid interface. Streamwise vortices in the fluid, the interface topography and the temperature field in the solid influence each other and adjust until a statistical steady state is obtained. The crest-to-trough amplitude of the channels are larger than about 10$δ_ν$ in all cases, with $δ_ν$ the viscous length scale, but are much larger and more persistent for an unstable stratification than for a neutral or stable stratification. This happens because a stable stratification makes the cool melt fluid buoyant such that it shields the channel from further melting, whereas an unstable stratification makes the cool melt fluid sink, inducing further melting by rising hot plumes. The statistics of flow velocities and melt rates are investigated, and we find that channels and keels emerging in our simulations do not significantly change the mean drag coefficient.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源