论文标题
TrueBranch:基于公制的森林保护项目验证
TrueBranch: Metric Learning-based Verification of Forest Conservation Projects
论文作者
论文摘要
国际利益相关者越来越多地投资于抵消碳排放,例如,通过向森林保护项目发行生态系统服务(PES)的付款。发行可信赖的付款需要生态系统服务的透明监控,报告和验证(MRV)过程(例如存储在森林中的碳)。但是,当前的MRV过程要么太昂贵(对森林的地面检查)或不准确(卫星)。最近的著作提出了低成本和准确的MRV,通过自动从土地所有者收集的无人机图像中确定森林碳。然而,MRV的自动化打开了土地所有者报告不真实的无人机图像的可能性。为了对不真实的报道保持强大的态度,我们提出了TrueBranch,这是一种基于公制的学习算法,可以验证森林保护项目中无人机图像的真实性。 TrueBranch的目的是通过将其与公共卫星图像相匹配来检测出不太真实地报告的无人机图像。初步结果表明,名义距离指标不足以可靠地检测到未能真实地报告的图像。 True Branch利用度量学习来创建一个嵌入的功能,在该功能中,可以通过距离阈值易于区分,在该功能中,实际上和不可真实地收集的图像可以区分。
International stakeholders increasingly invest in offsetting carbon emissions, for example, via issuing Payments for Ecosystem Services (PES) to forest conservation projects. Issuing trusted payments requires a transparent monitoring, reporting, and verification (MRV) process of the ecosystem services (e.g., carbon stored in forests). The current MRV process, however, is either too expensive (on-ground inspection of forest) or inaccurate (satellite). Recent works propose low-cost and accurate MRV via automatically determining forest carbon from drone imagery, collected by the landowners. The automation of MRV, however, opens up the possibility that landowners report untruthful drone imagery. To be robust against untruthful reporting, we propose TrueBranch, a metric learning-based algorithm that verifies the truthfulness of drone imagery from forest conservation projects. TrueBranch aims to detect untruthfully reported drone imagery by matching it with public satellite imagery. Preliminary results suggest that nominal distance metrics are not sufficient to reliably detect untruthfully reported imagery. TrueBranch leverages metric learning to create a feature embedding in which truthfully and untruthfully collected imagery is easily distinguishable by distance thresholding.