论文标题

连接强大的洗牌隐私和泛私人

Connecting Robust Shuffle Privacy and Pan-Privacy

论文作者

Balcer, Victor, Cheu, Albert, Joseph, Matthew, Mao, Jieming

论文摘要

在差异隐私的\ emph {Shuffle模型}中,数据存储用户将随机消息发送给安全的调整器,Shuffler将消息置入消息,而所产生的消息收集必须在用户数据方面差异化。在\ emph {pan-Provate}模型中,一种算法处理数据流,同时维护与流数据有关的内部状态。我们提供了连接这两个明显不同模型的证据。 我们的结果侧重于\ emph {Robustly}将私人协议混乱,其隐私保证并没有受到恶意用户的极大影响。首先,我们为计算不同的元素和均匀性测试提供了强有力的私人协议和上限。其次,我们使用Pan-Provate的下限来证明这两个问题的私人下限都可以稳健地进行。着眼于对域尺寸$ k $的依赖性,我们发现可靠的近似洗牌隐私和近似pan-privacy具有添加误差$θ(\ sqrt {k})$,用于计算不同的元素。对于均匀性测试,我们给出了一个可靠的近似洗牌私有协议,带有样品复杂性$ \ tilde o(k^{2/3})$,并表明$ω(k^{2/3})$依赖性对于任何可靠的纯pure Shuffle私有测试仪都是必需的。最后,我们证明了这种连接在两个方向上都是有用的:我们对最新的私人直方图进行了泛私有化的改编,并使用它来恢复泛 - 私人与交互式局部隐私之间的进一步分离。

In the \emph{shuffle model} of differential privacy, data-holding users send randomized messages to a secure shuffler, the shuffler permutes the messages, and the resulting collection of messages must be differentially private with regard to user data. In the \emph{pan-private} model, an algorithm processes a stream of data while maintaining an internal state that is differentially private with regard to the stream data. We give evidence connecting these two apparently different models. Our results focus on \emph{robustly} shuffle private protocols, whose privacy guarantees are not greatly affected by malicious users. First, we give robustly shuffle private protocols and upper bounds for counting distinct elements and uniformity testing. Second, we use pan-private lower bounds to prove robustly shuffle private lower bounds for both problems. Focusing on the dependence on the domain size $k$, we find that robust approximate shuffle privacy and approximate pan-privacy have additive error $Θ(\sqrt{k})$ for counting distinct elements. For uniformity testing, we give a robust approximate shuffle private protocol with sample complexity $\tilde O(k^{2/3})$ and show that an $Ω(k^{2/3})$ dependence is necessary for any robust pure shuffle private tester. Finally, we show that this connection is useful in both directions: we give a pan-private adaptation of recent work on shuffle private histograms and use it to recover further separations between pan-privacy and interactive local privacy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源