论文标题
在不确定性下的四极共振器的多目标设计优化
Multi-objective design optimization of a Quadrupole Resonator under uncertainties
论文作者
论文摘要
为了精确确定超导材料的射频(RF)性能,借助于所谓的四极杆谐振器(QPR)进行了量热测量。此过程受到各种不确定性来源的某些系统测量误差的影响。在本文中,为了减少几何不确定性对测量偏差的影响,根据期望度量}的多目标形状优化,修改后的最陡峭下降方法用于多目标形状优化。因此,几何参数的变化是通过多项式混乱(PC)扩展技术建模的。然后,使用基于PC的随机排列方法(PC-SCM)解决了麦克斯韦与随机输入数据的特征值问题。此外,为了评估特定几何参数的贡献,提出了基于方差的灵敏度分析。这允许修改最陡峭的下降算法,从而减少找到最佳解决方案所需的计算负载。最后,显示了QPR的三维(3D)模型的Pareto前部有效近似的优化形式。
For a precise determination of the radio frequency (RF) properties of superconducting materials, a calorimetric measurement is carried out with the aid of a so-called Quadrupole Resonator (QPR). This procedure is affected by certain systematic measurement errors with various sources of uncertainties. In this paper, to reduce the impact of geometrical uncertainties on the measurement bias, the modified steepest descent method is used for the multi-objective shape optimization of a QPR {in terms of an expectation measure}. Thereby, variations of geometrical parameters are modeled by the Polynomial Chaos (PC) expansion technique. Then, the resulting Maxwell's eigenvalue problem with random input data is solved using the PC-based stochastic collocation method (PC-SCM). Furthermore, to assess the contribution of the particular geometrical parameters, the variance-based sensitivity analysis is proposed. This allows for modifying the steepest descent algorithm, which results in reducing the computational load needed to find optimal solutions. Finally, optimization results in the form of an efficient approximation of the Pareto front for a three dimensional (3D) model of the QPR are shown.