论文标题

有限子集空间的度量几何形状

Metric Geometry of Finite Subset Spaces

论文作者

Akofor, Earnest

论文摘要

如果$ x $是一个(拓扑)空间,则$ n $ th有限子集$ x $,用$ x(n)$表示,由$ n $ n $ - 点子集组成$ x $的$ x $(即,最多是$ n $的非空心基数),其商的拓扑是由统一的地图$ q:x^n \ x^n \ x^n \ x x(N)$ Q: $(x_1,\ cdots,x_n)\ mapsto \ {x_1,\ cdots,x_n \} $。也就是说,当且仅当其PreImage $ Q^{ - 1}(a)$在产品空间$ x^n $中打开时,$ a \ subset x(n)$才打开。给定空间$ x $,令$ h(x)$表示$ x $的所有同态性。对于任何类同构的同构$ c \ subset H(x)$,$ c $ - $ x $的几何是指$ x $的描述,即$ c $的同构。因此,$ x $的拓扑是$ h(x)$ - 几何$ x $。通过$ x $的($ c $ - )几何属性,我们将意味着$ x $的属性由$ x $($ c $)保留。空间$ x $的度量几何是指$ x $的几何形状在$ x $上的指标(例如,路径的距离或路径的长度)方面的研究。在这样的研​​究中,如果$ x $同型对度量空间,我们称之为$ x $ METRIZABLE。自然,$ x(n)$总是继承$ x $或$ x^n $的每个几何属性的某些方面。因此,$ x(n)$的几何形状通常比$ x $或$ x^n $更丰富。例如,众所周知,如果$ x $是可定向的歧管,那么(与$ x^n $不同)$ n> 1 $的$ x(n)$可以是可定向的歧管,不可定向的歧管或非手法。在研究$ x(n)$的几何形状时,一个中心的研究问题是“如果$ x $具有几何属性$ p $,是否遵循$ x(n)$也有属性$ p $?”。一个相关的问题是“如果$ x $和$ y $具有几何关系$ r $,是否遵循$ x(n)$和$ y(n)$也具有关系$ r $?”。 (截断)

If $X$ is a (topological) space, the $n$th finite subset space of $X$, denoted by $X(n)$, consists of $n$-point subsets of $X$ (i.e., nonempty subsets of cardinality at most $n$) with the quotient topology induced by the unordering map $q:X^n\to X(n)$, $(x_1,\cdots,x_n)\mapsto\{x_1,\cdots,x_n\}$. That is, a set $A\subset X(n)$ is open if and only if its preimage $q^{-1}(A)$ is open in the product space $X^n$. Given a space $X$, let $H(X)$ denote all homeomorphisms of $X$. For any class of homeomorphisms $C\subset H(X)$, the $C$-geometry of $X$ refers to the description of $X$ up to homeomorphisms in $C$. Therefore, the topology of $X$ is the $H(X)$-geometry of $X$. By a ($C$-) geometric property of $X$ we will mean a property of $X$ that is preserved by homeomorphisms of $X$ (in $C$). Metric geometry of a space $X$ refers to the study of geometry of $X$ in terms of notions of metrics (e.g., distance, or length of a path, between points) on $X$. In such a study, we call a space $X$ metrizable if $X$ is homeomorphic to a metric space. Naturally, $X(n)$ always inherits some aspect of every geometric property of $X$ or $X^n$. Thus, the geometry of $X(n)$ is in general richer than that of $X$ or $X^n$. For example, it is known that if $X$ is an orientable manifold, then (unlike $X^n$) $X(n)$ for $n>1$ can be an orientable manifold, a non-orientable manifold, or a non-manifold. In studying geometry of $X(n)$, a central research question is "If $X$ has geometric property $P$, does it follow that $X(n)$ also has property $P$?". A related question is "If $X$ and $Y$ have a geometric relation $R$, does it follow that $X(n)$ and $Y(n)$ also have the relation $R$?". (Truncated)

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源