论文标题

在无序的Ising $ p $ -spin模型的动态中,本地最小值之间的障碍,陷阱时间和重叠

Barriers, trapping times and overlaps between local minima in the dynamics of the disordered Ising $p$-spin Model

论文作者

Stariolo, Daniel A., Cugliandolo, Leticia F.

论文摘要

我们研究了$ p = 3 $和少量的自旋变量的无序ISP $ spin模型的低温蒙特卡洛动力学。我们专注于稳定的构型序列,这些构型稳定在持续的瞬时梯度下降中获得的单个自旋翻转。我们在子序列上分析了能隙,能屏障和捕获时间的统计数据,从而使连续配置之间的重叠无法克服阈值。我们将结果与各种陷阱模型的预测进行比较,当$ p $ -spin配置被限制为不相关时,找到与步骤模型的最佳一致性。

We study the low temperature out of equilibrium Monte Carlo dynamics of the disordered Ising $p$-spin Model with $p=3$ and a small number of spin variables. We focus on sequences of configurations that are stable against single spin flips obtained by instantaneous gradient descent from persistent ones. We analyze the statistics of energy gaps, energy barriers and trapping times on sub-sequences such that the overlap between consecutive configurations does not overcome a threshold. We compare our results to the predictions of various trap models finding the best agreement with the step model when the $p$-spin configurations are constrained to be uncorrelated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源