论文标题
Schiffer变化和Hypersurfaces的通用Torelli定理
Schiffer variations and the generic Torelli theorem for hypersurfaces
论文作者
论文摘要
我们展示了如何从hodge结构的有限订单变化中恢复足够大的$ d $划分$ n+1 $的$ \ mathbb {p}^n $中的一般超浮雕。我们还分析了多纳吉通用Torelli定理未涵盖的另外两个案例。结合多纳吉定理,这表明Hypersurfaces的通用Torelli定理与许多例外有限。
We show how to recover a general hypersurface in $\mathbb{P}^n$ of sufficiently large degree $d$ dividing $n+1$, from its finite order variation of Hodge structure. We also analyze the two other series of cases not covered by Donagi's generic Torelli theorem. Combined with Donagi's theorem, this shows that the generic Torelli theorem for hypersurfaces holds with finitely many exceptions.