论文标题
$ f(r,g)$重力
Gravastars in $f(R,G)$ Gravity
论文作者
论文摘要
在本文中,我们讨论了Mazur和Mottola首先证明的Grastar的一些可行特征。已经确定,Gravastar将其内部部门的De-sitter时空与Schwarzschild几何形状相关联,其外部通过具有超相关的物质的薄外壳将其外观相关联。我们已经在$ f(r,g)$重力的影响下探索了具有特定状态方程式的奇异性球形模型,其中$ r $是ricci scalar,而$ g $是高斯 - 邦纳特术语。使用以色列形式主义,内部几何形状与合适的外部相匹配。另外,我们讨论了一种可行的ratpastar解决方案,该解决方案描述了$ f(r,g)$重力的影响下其他物理可持续的因素。讨论了Grastar模型的不同现实特征,特别是壳的长度,熵和能量。该特殊重力的重要作用是对GARVASTAR模型的可持续性的研究。
In this paper, we discuss some feasible features of gravastar that were firstly demonstrated by Mazur and Mottola. It is already established that gravastar associates the de-Sitter spacetime in its inner sector with the Schwarzschild geometry at its exterior through the thin shell possessing the ultra-relativistic matter. We have explored the singularity free spherical model with a particular equation of state under the influence of $f(R,G)$ gravity, where $R$ is the Ricci scalar and $G$ is the Gauss-Bonnet term. The interior geometry is matched with a suitable exterior using Israel formalism. Also, we discussed a feasible solution of gravastar which describes the other physically sustainable factors under the influence of $f(R,G)$ gravity. Different realistic characteristics of the gravastar model are discussed, in particular, shell's length, entropy, and energy. A significant role of this particular gravity is examined for the sustainability of gravastar model.